Skip to main content
Log in

Dynamic Change in Morphology and Traction Forces at Focal Adhesions in Cultured Vascular Smooth Muscle Cells During Contraction

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

In order to study how cells change their traction forces at focal adhesions (FAs) following cell contraction, we observed the dynamic changes in traction forces at FAs, the morphology of FAs, and actin stress fibers (SFs) anchoring FAs in cultured porcine aortic smooth muscle cells (SMCs) during cell contraction. SMCs were cultured on polydimethylsiloxane-based elastic micropillar array substrates, and their traction forces at individual FAs were measured by the deflection of the pillars during cell contraction induced with 10−4 M serotonin. The traction forces started to increase immediately after the administration of serotonin, especially at the cell periphery, and their direction converged gradually to that of the cell major axis. The directional change of force reached a plateau in the early stages of the contraction. The time constants were significantly smaller for changes in direction (mean ± standard deviation: 8.0 ± 4.5 min; 116 pillars of 10 cells) compared to those concerning the magnitude of the force (16.6 ± 6.0 min). Surface reflective interference contrast microscopy revealed that the morphological changes in FAs showed a trend similar to that of their forces: FAs grew and aligned in the direction of the cell major axis in the early stage of the contraction. Some FAs then merged and continuously elongated along SFs. The number of FAs and SFs in each cell decreased similarly by 15–20% 60 min after the administration of serotonin, suggesting that contractile activation induced fusion of FAs and of SFs. Total FA area per cell more than doubled in 60 min. These results indicate that FAs may remodel themselves actively during cell contraction depending on the direction and strength of contractile forces of SFs. The fusion of FAs and of SFs may have the directions of the traction forces more coherent, and thus increase the net contraction force generated by each SMC. The concomitant increase in the FA area may make adhesion sites strong enough to transmit the increased force to the extracellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.

    Article  Google Scholar 

  2. Burton, K., J. H. Park, and D. L. Taylor. Keratocytes generate traction forces in two phases. Mol. Biol. Cell 10(11):3745–3769, 1999.

    Google Scholar 

  3. Califano, J. P., and C. A. Reinhart-King. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3(1):68–75, 2010.

    Article  Google Scholar 

  4. Chen, C. S., J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307(2):355–361, 2003.

    Article  Google Scholar 

  5. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276(5317):1425–1428, 1997.

    Article  Google Scholar 

  6. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Progr. 14(3):356–363, 1998.

    Article  Google Scholar 

  7. Chowdhury, F., S. Na, D. Li, Y. C. Poh, T. S. Tanaka, F. Wang, and N. Wang. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9(1):82–88, 2010.

    Google Scholar 

  8. Davies, P. F., A. Robotewskyj, and M. L. Griem. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Invest. 93:2031–2038, 1994.

    Article  Google Scholar 

  9. Deguchi, S., T. Ohashi, and M. Sato. Intracellular stress transmission through actin stress fiber network in adherent vascular cells. Mol. Cell. Biomech. 2(4):205–216, 2005.

    Google Scholar 

  10. du Roure, O., A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan, and B. Ladoux. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102(7):2390–2395, 2005.

    Article  Google Scholar 

  11. Galbraith, C. G., and M. P. Sheetz. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94(17):9114–9118, 1997.

    Article  Google Scholar 

  12. Gardel, M. L., B. Sabass, L. Ji, G. Danuser, U. S. Schwarz, and C. M. Waterman. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183(6):999–1005, 2008.

    Article  Google Scholar 

  13. Goffin, J. M., P. Pittet, G. Csucs, J. W. Lussi, J. J. Meister, and B. Hinz. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172–2:259–268, 2006.

    Article  Google Scholar 

  14. Hotulainen, P., and P. Lappalainen. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173(3):383–394, 2006.

    Article  Google Scholar 

  15. Krishnan, R., D. D. Klumpers, C. Y. Park, K. Rajendran, X. Trepat, J. van Bezu, V. W. van Hinsbergh, C. V. Carman, J. D. Brain, J. J. Fredberg, J. P. Butler, and G. P. van Nieuw Amerongen. Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am. J. Physiol.: Cell. Physiol. 300(1):C146–C154, 2011.

    Article  Google Scholar 

  16. Li, B., M. Lin, Y. Tang, B. Wang, and J. H. Wang. A novel functional assessment of the differentiation of micropatterned muscle cells. J. Biomech. 41(16):3349–3353, 2008.

    Article  Google Scholar 

  17. Matsumoto, T., M. Tsuchida, and M. Sato. Change in intramural strain distribution in rat aorta due to smooth muscle contraction/relaxation. Am. J. Physiol. 271(4 Pt 2):1711–1716, 1996.

    Google Scholar 

  18. Mott, R. E., and B. P. Helmke. Mapping the dynamics of shear stress-induced structural changes in endothelial cells. Am. J. Physiol.: Cell Physiol. 293(5):C1616–C1626, 2007.

    Article  Google Scholar 

  19. Nagayama, K., and T. Matsumoto. Estimation of single stress fiber stiffness in cultured aortic smooth muscle cells under relaxed and contracted states: its relation to dynamic rearrangement of stress fibers. J. Biomech. 43:1443–1449, 2010.

    Article  Google Scholar 

  20. Nagayama, K., A. Tsugawa, and T. Matsumoto. Tensile properties of cultured aortic smooth muscle cells obtained in a quasi-in situ tensile test with thermoresponsive gelatin. J. Biomech. Sci. Eng. 1–1:256–267, 2006.

    Article  Google Scholar 

  21. Pellegrin, S., and H. Mellor. Actin stress fibres. J. Cell Sci. 120(20):3491–3499, 2007.

    Article  Google Scholar 

  22. Rabinovitz, I., I. K. Gipson, and A. M. Mercurio. Traction forces mediated by alpha6beta4 integrin: implications for basement membrane organization and tumor invasion. Mol. Biol. Cell 12(12):4030–4043, 2001.

    Google Scholar 

  23. Riveline, D., E. Zamir, N. Q. Balaban, U. S. Schwarz, T. Ishizaki, S. Narumiya, Z. Kam, B. Geiger, and A. D. Bershadsky. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK independent mechanism. J. Cell Biol. 153:1175–1185, 2001.

    Article  Google Scholar 

  24. Smilenov, L. B., A. Mikhailov, R. J. Pelham, E. E. Marcantonio, and G. G. Gundersen. Focal adhesion motility revealed in stationary fibroblasts. Science 286(5442):1172–1174, 1999.

    Article  Google Scholar 

  25. Tan, J. L., J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100(4):1484–1489, 2003.

    Article  Google Scholar 

  26. Tufan, H., B. Ayan-Polat, M. Tecder-Unal, G. Polat, Z. Kayhan, and E. Ogus. Contractile responses of the human umbilical artery to KCl and serotonin in Ca-free medium and the effects of levcromakalim. Life Sci. 72–12:1321–1329, 2003.

    Article  Google Scholar 

  27. Undyala, V. V., M. Dembo, K. Cembrola, B. J. Perrin, A. Huttenlocher, J. S. Elce, P. A. Greer, Y. L. Wang, and K. A. Beningo. The calpain small subunit regulates cell-substrate mechanical interactions during fibroblast migration. J. Cell Sci. 121(Pt 21):3581–3588, 2008.

    Article  Google Scholar 

  28. Warshaw, D. M., J. L. Szarek, M. S. Hubbard, and J. N. Evans. Pharmacology and force development of single freshly isolated bovine carotid artery smooth muscle cells. Circ. Res. 58–3:399–406, 1986.

    Google Scholar 

  29. Wells, C. M., A. D. Whale, M. Parsons, J. R. Masters, and G. E. Jones. PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion. J. Cell Sci. 123(Pt 10):1663–1673, 2010.

    Article  Google Scholar 

  30. Wolfenson, H., Y. I. Henis, B. Geiger, and A. D. Bershadsky. The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil. Cytoskel. 66(11):1017–1029, 2009.

    Article  Google Scholar 

  31. Zhang, W., and S. J. Gunst. Dynamic association between alpha-actinin and beta-integrin regulates contraction of canine tracheal smooth muscle. J. Physiol. 572–3:659–676, 2006.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Nos. 20680025, 21114508 and 22650104 to K.N. and No. 22240055 to T.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Nagayama.

Additional information

Associate Editor Mian Long and Fan Yuan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 774 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagayama, K., Matsumoto, T. Dynamic Change in Morphology and Traction Forces at Focal Adhesions in Cultured Vascular Smooth Muscle Cells During Contraction. Cel. Mol. Bioeng. 4, 348–357 (2011). https://doi.org/10.1007/s12195-011-0166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0166-y

Keywords

Navigation