Skip to main content
Log in

Vertebral endplate trauma induces disc cell apoptosis and promotes organ degeneration in vitro

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

There is a major controversy whether spinal trauma with vertebral endplate fractures can result in post-traumatic disc degeneration. Intervertebral discs, which are adjacent to burst endplates, are frequently removed and an intercorporal spondylodesis is performed. In any case, the biological effects within the discs following endplate factures are poorly elucidated to date. The aim of our investigations was therefore to establish a novel disc/endplate trauma culture model to reproducibly induce endplate fractures and investigate concurrent disc changes in vitro. This model is based on a full-organ disc/endplate culture system, which has been validated by the authors before. Intervertebral disc/endplate specimens were isolated from Burgundy rabbits and cultured in standard media (DMEM/F12, 10%FCS). Burst endplate fractures were induced in half of the specimens with a custom-made fracture device and subsequently cultured for 9 days. The biological effects such as necrotic or apoptotic cell death and the expression of pro-apoptotic genes and other genes involved in organ degeneration, e.g. matrix metalloproteinases (MMPs) were analyzed. Cell damage was assessed by quantification of the lactate dehydrogenase (LDH) activity in the supernatant. The expression of genes involved in the cellular apoptotic pathway (caspase 3) and the pro-apoptotic proteins FasL and TNF-α were monitored. The results demonstrate that LDH levels increased significantly post trauma compared to the control and remained elevated for 3 days. Furthermore, a constant up-regulation of the caspase 3 gene in both disc compartments was present. The pro-apoptotic proteins FasL and TNF-α were up regulated predominantly in the nucleus whereas the MMP-1 and -13 transcripts (collagenases) were increased in both disc structures. From this study we can conclude that endplate burst fractures result in both necrotic and apoptotic cell death in nucleus and annulus tissue. Moreover, FasL and TNF-α expression by nucleus cells may lead to continued apoptosis induced by Fas- and TNF-α receptor bearing cells. In addition TNF-α over-expression has potentially deleterious effects on disc metabolism such as over-expression of matrix proteinases. Taken together, the short term biological response of the disc following endplate fracture exhibits characteristics, which may initiate the degeneration of the organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aebi M (2005) The adult scoliosis. Eur Spine J 14:925–948

    Article  PubMed  Google Scholar 

  2. Ahsan R, Tajima N, Chosa E, Sugamata M, Sumida M, Hamada M (2001) Biochemical and morphological changes in herniated human intervertebral disc. J Orthop Sci 6:510–518

    Article  PubMed  CAS  Google Scholar 

  3. Alanay A (2000) Re: post-traumatic findings of the spine after earlier vertebral fracture in young patients. Spine 25:2847–2848

    Article  PubMed  CAS  Google Scholar 

  4. Anderson DG, Izzo MW, Hall DJ, Vaccaro AR, Hilibrand A, Arnold W, Tuan RS, Albert TJ (2002) Comparative gene expression profiling of normal and degenerative discs: analysis of a rabbit annular laceration model. Spine 27:1291–1296

    Article  PubMed  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  6. Bush PG, Hodkinson PD, Hamilton GL, Hall AC (2005) Viability and volume of in situ bovine articular chondrocytes-changes following a single impact and effects of medium osmolarity. Osteoarthritis Cartilage 13:54–65

    Article  PubMed  Google Scholar 

  7. Chang JK, Wu SC, Wang GJ, Cho MH, Ho ML (2006) Effects of non-steroidal anti-inflammatory drugs on cell proliferation and death in cultured epiphyseal-articular chondrocytes of fetal rats. Toxicology 228:111–123

    Article  PubMed  CAS  Google Scholar 

  8. Chen B, Fellenberg J, Wang H, Carstens C, Richter W (2005) Occurrence and regional distribution of apoptosis in scoliotic discs. Spine 30:519–524

    Article  PubMed  Google Scholar 

  9. Cinotti G, Della Rocca C, Romeo S, Vittur F, Toffanin R, Trasimeni G (2005) Degenerative changes of porcine intervertebral disc induced by vertebral endplate injuries. Spine 30:174–180

    Article  PubMed  Google Scholar 

  10. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    PubMed  CAS  Google Scholar 

  11. Dang AC, Warren AP, Kim HT (2006) Beneficial effects of intra-articular caspase inhibition therapy following osteochondral injury. Osteoarthritis Cartilage 14:526–532

    Article  PubMed  CAS  Google Scholar 

  12. Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69

    Article  PubMed  CAS  Google Scholar 

  13. Dickson RA, Butt WP (2003) Post-traumatic findings of the spine after earlier vertebral fractures in young patients. Spine 28:1749–1750 author reply 1750

    Article  PubMed  CAS  Google Scholar 

  14. D’Lima DD, Hashimoto S, Chen PC, Colwell CW Jr., Lotz MK (2001) Human chondrocyte apoptosis in response to mechanical injury. Osteoarthritis Cartilage 9:712–719

    Article  PubMed  CAS  Google Scholar 

  15. Galante JO (1967) Tensile properties of the human lumbar annulus fibrosus. Acta Orthop Scand Suppl 100:101–191

    Google Scholar 

  16. Goldberg GI, Wilhelm SM, Kronberger A, Bauer EA, Grant GA, Eisen AZ (1986) Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein. J Biol Chem 261:6600–6605

    PubMed  CAS  Google Scholar 

  17. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21:1465–1468

    Article  PubMed  CAS  Google Scholar 

  18. Guehring T, Omlor GW, Lorenz H, Bertram H, Steck E, Richter W, Carstens C, Kroeber M (2005) Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration—an in vivo animal study. Spine 30:2510–2515

    Article  PubMed  Google Scholar 

  19. Haschtmann D, Stoyanov JV, Ettinger L, Nolte LP, Ferguson SJ (2006) Establishment of a novel intervertebral disc/endplate culture model: analysis of an ex vivo in vitro whole-organ rabbit culture system. Spine 31:2918–2925

    Article  PubMed  Google Scholar 

  20. Haschtmann D, Stoyanov JV, Ferguson SJ (2006) Influence of diurnal hyperosmotic loading on the metabolism and matrix gene expression of a whole-organ intervertebral disc model. J Orthop Res 24:1957–1966

    Article  PubMed  CAS  Google Scholar 

  21. Heyde CE, Tschoeke SK, Hellmuth M, Hostmann A, Ertel W, Oberholzer A (2006) Trauma induces apoptosis in human thoracolumbar intervertebral discs. BMC Clin Pathol 6:5

    Article  PubMed  Google Scholar 

  22. Holm S, Holm AK, Ekstrom L, Karladani A, Hansson T (2004) Experimental disc degeneration due to endplate injury. J Spinal Disord Tech 17:64–71

    Article  PubMed  Google Scholar 

  23. Hsu K, Zucherman J, Shea W, Kaiser J, White A, Schofferman J, Amelon C (1990) High lumbar disc degeneration. Incidence and etiology. Spine 15:679–682

    Article  PubMed  CAS  Google Scholar 

  24. Huser CA, Davies ME (2006) Validation of an in vitro single-impact load model of the initiation of osteoarthritis-like changes in articular cartilage. J Orthop Res 24:725–732

    Article  PubMed  CAS  Google Scholar 

  25. Huser CA, Peacock M, Davies ME (2006) Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma. Osteoarthritis Cartilage 14:1002–1010

    Article  PubMed  CAS  Google Scholar 

  26. Izambert O, Mitton D, Thourot M, Lavaste F (2003) Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. Eur Spine J 12:562–566

    Article  PubMed  CAS  Google Scholar 

  27. Kato T, Haro H, Komori H, Shinomiya K (2004) Sequential dynamics of inflammatory cytokine, angiogenesis inducing factor and matrix degrading enzymes during spontaneous resorption of the herniated disc. J Orthop Res 22:895–900

    Article  PubMed  CAS  Google Scholar 

  28. Kerttula LI, Serlo WS, Tervonen OA, Paakko EL, Vanharanta HV (2000) Post-traumatic findings of the spine after earlier vertebral fracture in young patients: clinical and MRI study. Spine 25:1104–1108

    Article  PubMed  CAS  Google Scholar 

  29. Kifune M, Panjabi MM, Arand M, Liu W (1995) Fracture pattern and instability of thoracolumbar injuries. Eur Spine J 4:98–103

    Article  PubMed  CAS  Google Scholar 

  30. Knauper V, Lopez-Otin C, Smith B, Knight G, Murphy G (1996) Biochemical characterization of human collagenase-3. J Biol Chem 271:1544–1550

    Article  PubMed  CAS  Google Scholar 

  31. Kohyama K, Saura R, Doita M, Mizuno K (2000) Intervertebral disc cell apoptosis by nitric oxide: biological understanding of intervertebral disc degeneration. Kobe J Med Sci 46:283–295

    PubMed  CAS  Google Scholar 

  32. Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313–320

    Article  PubMed  CAS  Google Scholar 

  33. Kroeber MW, Unglaub F, Wang H, Schmid C, Thomsen M, Nerlich A, Richter W (2002) New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine 27:2684–2690

    Article  PubMed  Google Scholar 

  34. Le Maitre CL, Freemont AJ, Hoyland JA (2004) Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 204:47–54

    Article  PubMed  CAS  Google Scholar 

  35. LeBlanc AC (2003) Natural cellular inhibitors of caspases. Prog Neuropsychopharmacol Biol Psychiatry 27:215–229

    Article  PubMed  CAS  Google Scholar 

  36. Lotz JC, Chin JR (2000) Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine 25:1477–1483

    Article  PubMed  CAS  Google Scholar 

  37. Mesner PW Jr, Kaufmann SH (1997) Methods utilized in the study of apoptosis. Adv Pharmacol 41:57–87

    Article  PubMed  CAS  Google Scholar 

  38. Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G, Tryggvason K (1999) Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science 284:1667–1670

    Article  PubMed  CAS  Google Scholar 

  39. O’Brien MC, Healy SF Jr, Raney SR, Hurst JM, Avner B, Hanly A, Mies C, Freeman JW, Snow C, Koester SK, Bolton WE (1997) Discrimination of late apoptotic/necrotic cells (type III) by flow cytometry in solid tumors. Cytometry 28:81–89

    Article  PubMed  CAS  Google Scholar 

  40. Omlor GW, Lorenz H, Engelleiter K, Richter W, Carstens C, Kroeber MW, Guehring T (2006) Changes in gene expression and protein distribution at different stages of mechanically induced disc degeneration–an in vivo study on the New Zealand white rabbit. J Orthop Res 24:385–392

    Article  PubMed  CAS  Google Scholar 

  41. Oner FC, van der Rijt RR, Ramos LM, Dhert WJ, Verbout AJ (1998) Changes in the disc space after fractures of the thoracolumbar spine. J Bone Joint Surg Br 80:833–839

    Article  PubMed  CAS  Google Scholar 

  42. Poole CA, Brookes NH, Clover GM (1993) Keratocyte networks visualised in the living cornea using vital dyes. J Cell Sci 106(Pt 2):685–691

    PubMed  Google Scholar 

  43. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  PubMed  CAS  Google Scholar 

  44. Przybyla A, Pollintine P, Bedzinski R, Adams MA (2006) Outer annulus tears have less effect than endplate fracture on stress distributions inside intervertebral discs: relevance to disc degeneration. Clin Biomech (Bristol, Avon) 21(10):1013–1019

    Article  Google Scholar 

  45. Rannou F, Lee TS, Zhou RH, Chin J, Lotz JC, Mayoux-Benhamou MA, Barbet JP, Chevrot A, Shyy JY (2004) Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. Am J Pathol 164:915–924

    PubMed  CAS  Google Scholar 

  46. Seguin CA, Pilliar RM, Roughley PJ, Kandel RA (2005) Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine 30:1940–1948

    Article  PubMed  Google Scholar 

  47. Sobajima S, Shimer AL, Chadderdon RC, Kompel JF, Kim JS, Gilbertson LG, Kang JD (2005) Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J 5:14–23

    Article  PubMed  Google Scholar 

  48. Takada T, Nishida K, Doita M, Kurosaka M (2002) Fas ligand exists on intervertebral disc cells: a potential molecular mechanism for immune privilege of the disc. Spine 27:1526–1530

    Article  PubMed  Google Scholar 

  49. Tryggvason K, Huhtala P, Hoyhtya M, Hujanen E, Hurskainen T (1992) 70 K type IV collagenase (gelatinase). Matrix Suppl 1:45–50

    PubMed  CAS  Google Scholar 

  50. Vornanen M, Bostman O, Keto P, Myllynen P (1993) The integrity of intervertebral disks after operative treatment of thoracolumbar fractures. Clin Orthop Relat Res December(297):150–154

    Google Scholar 

  51. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) 2002 SSE Award competition in basic science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320

    Article  PubMed  CAS  Google Scholar 

  52. Whiteside RA, Jakob RP, Wyss UP, Mainil-Varlet P (2005) Impact loading of articular cartilage during transplantation of osteochondral autograft. J Bone Joint Surg Br 87:1285–1291

    Article  PubMed  CAS  Google Scholar 

  53. Yong-Hing K, Kirkaldy-Willis WH (1983) The pathophysiology of degenerative disease of the lumbar spine. Orthop Clin North Am 14:491–504

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the AO Foundation, Davos Switzerland for funding and Ladina Ettinger for excellent technical assistance

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Haschtmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haschtmann, D., Stoyanov, J.V., Gédet, P. et al. Vertebral endplate trauma induces disc cell apoptosis and promotes organ degeneration in vitro. Eur Spine J 17, 289–299 (2008). https://doi.org/10.1007/s00586-007-0509-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-007-0509-5

Keywords

Navigation