Skip to main content
Log in

Surface Plasmon Resonance Monitoring of Cell Monolayer Integrity: Implication of Signaling Pathways Involved in Actin-Driven Morphological Remodeling

  • Molecular Interactions
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Morphological changes occurring in individual cells largely influence the physiological functions of various cell layers. The control of barrier function of epithelia and endothelia is a prime example of processes highly dependent on cellular morphology and cell layer integrity. Here, we applied the surface plasmon resonance (SPR) technique to the quantification of cellular activity of an epithelial cell monolayer stimulated by angiotensin II. The analysis of the SPR signal shows reproducible concentration-dependent biphasic responses after cell activation with angiotensin II. Phase-contrast and confocal microscopy imaging was performed to link the SPR signal to molecular and global morphological remodeling. The SPR signal was observed to be in relation with the rapid cell contraction and the subsequent cell spreading observed by phase-contrast microscopy. Additionally, the temporal redistribution of actin, observed by confocal microscopy after angiotensin II stimulation, was also found to be consistent with the SPR signal variation. The modulation of signaling pathways involved in actin-myosin driven cell contraction confirms the direct implication of actin structures in the SPR response. Additionally, we show that the intracellular calcium mobilization associated with angiotensin II stimulation did not produce any significant SPR signal variation. Altogether, our results demonstrate that SPR is a rapid label-free method to study cellular activity and molecular mechanisms implicated in the modulation of the integrity of a cell monolayer in relation to cytoskeleton remodeling with associated cell morphological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adamson, R. H., Curry, F. E., Adamson, G., Liu, B., Jiang, Y., Aktories, K., Barth, H., Daigeler, A., Golenhofen, N., Ness, W., Drenckhahn, D. (2002). Rho and rho kinase modulation of barrier properties: cultured endothelial cells and intact microvessels of rats and mice. J Physiol 539, 295–308

    Article  Google Scholar 

  2. Auger-Messier, M., Arguin, G., Chaloux, B., Leduc, R., Escher, E., Guillemette, G. (2004). Down-regulation of inositol 1,4,5-trisphosphate receptor in cells stably expressing the constitutively active angiotensin II N111G-AT(1) receptor. Mol Endocrinol 18, 2967–80

    Article  Google Scholar 

  3. Auger-Messier, M., Clement, M., Lanctot, P. M., Leclerc, P. C., Leduc, R., Escher, E., Guillemette, G. (2003). The constitutively active N111G-AT1 receptor for angiotensin II maintains a high affinity conformation despite being uncoupled from its cognate G protein Gq/11alpha. Endocrinology 144, 5277–84

    Article  Google Scholar 

  4. Auger-Messier, M., Turgeon, E. S., Leduc, R., Escher, E., Guillemette, G. (2005). The constitutively active N111G-AT1 receptor for angiotensin II modifies the morphology and cytoskeletal organization of HEK-293 cells. Exp Cell Res 308, 188–95

    Article  Google Scholar 

  5. Bedecs, K., Elbaz, N., Sutren, M., Masson, M., Susini, C., Strosberg, A. D., Nahmias, C. (1997). Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase. Biochem J 325(Pt 2), 449–54

    Google Scholar 

  6. Beningo, K. A., Hamao, K., Dembo, M., Wang, Y. L., Hosoya, H. (2006). Traction forces of fibroblasts are regulated by the Rho-dependent kinase but not by the myosin light chain kinase. Arch Biochem Biophys 456, 224–31

    Article  Google Scholar 

  7. Besenicar, M., Macek, P., Lakey, J. H., Anderluh, G. (2006). Surface plasmon resonance in protein-membrane interactions. Chem Phys Lipids 141, 169–78

    Article  Google Scholar 

  8. Carattino, M. D., Sheng, S., Kleyman, T. R. (2004). Epithelial Na+ channels are activated by laminar shear stress. J Biol Chem 279, 4120–6

    Article  Google Scholar 

  9. Chah S., Y. J., Zare R.N. (2004). Surface plasmon resonance analysis of aqueous mercuric ions. Sensors and Actuators B 99, 216–222

    Article  Google Scholar 

  10. Coraux, C., Kileztky, C., Polette, M., Hinnrasky, J., Zahm, J. M., Devillier, P., De Bentzmann, S., Puchelle, E. (2004). Airway epithelial integrity is protected by a long-acting beta2-adrenergic receptor agonist. Am J Respir Cell Mol Biol 30, 605–12

    Article  Google Scholar 

  11. Degasparo, M., Catt, K. J., Inagami, T., Wright, J. W., Unger, T. (2000). International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52, 415–72

    Google Scholar 

  12. Dou, Y., Arlock, P., Arner, A. (2007). Blebbistatin specifically inhibits actin-myosin interaction in mouse cardiac muscle. Am J Physiol Cell Physiol 293, C1148–53

    Article  Google Scholar 

  13. Emmert, D. A., Fee, J. A., Goeckeler, Z. M., Grojean, J. M., Wakatsuki, T., Elson, E. L., Herring, B. P., Gallagher, P. J., Wysolmerski, R. B. (2004). Rho-kinase-mediated Ca2+-independent contraction in rat embryo fibroblasts. Am J Physiol Cell Physiol 286, C8–21

    Article  Google Scholar 

  14. Essler, M., Retzer, M., Bauer, M., Heemskerk, J. W., Aepfelbacher, M., Siess, W. (1999). Mildly oxidized low density lipoprotein induces contraction of human endothelial cells through activation of Rho/Rho kinase and inhibition of myosin light chain phosphatase. J Biol Chem 274, 30361–4

    Article  Google Scholar 

  15. Hansson, K. M., Johansen, K., Wettero, J., Klenkar, G., Benesch, J., Lundstrom, I., Lindahl, T. L., Tengvall, P. (2007). Surface plasmon resonance detection of blood coagulation and platelet adhesion under venous and arterial shear conditions. Biosens Bioelectron 23, 261–8

    Article  Google Scholar 

  16. Helmke, B. P. (2005). Molecular control of cytoskeletal mechanics by hemodynamic forces. Physiology (Bethesda) 20, 43–53

    Google Scholar 

  17. Hide, M., Tsutsui, T., Sato, H., Nishimura, T., Morimoto, K., Yamamoto, S., Yoshizato, K. (2002). Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance-based biosensor. Anal Biochem 302, 28–37

    Article  Google Scholar 

  18. Higuchi, S., Ohtsu, H., Suzuki, H., Shirai, H., Frank, G. D., Eguchi, S. (2007). Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 112, 417–28

    Article  Google Scholar 

  19. Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377, 528–39

    Article  Google Scholar 

  20. Ishii, M., Kurachi, Y. (2006). Muscarinic acetylcholine receptors. Curr Pharm Des 12, 3573–81

    Article  Google Scholar 

  21. Ivanov, A. I., McCall, I. C., Parkos, C. A., Nusrat, A. (2004). Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol Biol Cell 15, 2639–51

    Article  Google Scholar 

  22. Kamm, K. E., Stull, J. T. (2001). Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem 276, 4527–30

    Article  Google Scholar 

  23. Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A., Sellers, J. R. (2004). Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279, 35557–63

    Article  Google Scholar 

  24. Liang X.J., L. A. Q., Lim C.S., Ayi T.C., Yap P.H. (2007). Determining refractive index of single living cell using an integrated microchip. Sensors and Actuators A 133, 349–354

    Article  Google Scholar 

  25. Lopardo, M. L., Diaz-Sylvester, P., Amorena, C. (2007). The effect of shear stress on the basolateral membrane potential of proximal convoluted tubule of the rat kidney. Pflugers Arch 454, 289–95

    Article  Google Scholar 

  26. Luo, D., Broad, L. M., Bird, G. S., Putney, J. W., Jr. (2001). Signaling pathways underlying muscarinic receptor-induced [Ca2+]i oscillations in HEK293 cells. J Biol Chem 276, 5613–21

    Article  Google Scholar 

  27. Melton, A. C., Datta, A., Yee, H. F., Jr. (2006). [Ca2+]i-independent contractile force generation by rat hepatic stellate cells in response to endothelin-1. Am J Physiol Gastrointest Liver Physiol 290, G7–13

    Article  Google Scholar 

  28. Moon, J., Kang, T., Oh, S., Hong, S., Yi, J. (2006). In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy. J Colloid Interface Sci 298, 543–9

    Article  Google Scholar 

  29. Motulsky, H. J. (1999). “Analyzing Data with GraphPad Prism,”. GraphPad Software Inc., San Diego CA

    Google Scholar 

  30. Neves, S. R., Ram, P. T., Iyengar, R. (2002). G protein pathways. Science 296, 1636–9

    Article  Google Scholar 

  31. Nobe, K., Sone, T., Paul, R. J., Honda, K. (2005). Thrombin-induced force development in vascular endothelial cells: contribution to alteration of permeability mediated by calcium-dependent and -independent pathways. J Pharmacol Sci 99, 252–63

    Article  Google Scholar 

  32. Ozawa, T., Kakuta, M., Sugawara, M., Umezawa, Y., Ikura, M. (1997). An optical method for evaluating ion selectivity for calcium signaling pathways in the cell. Anal Chem 69, 3081–5

    Article  Google Scholar 

  33. Ozawa, T., Sasaki, K., Umezawa, Y. (1999). Metal ion selectivity for formation of the calmodulin-metal-target peptide ternary complex studied by surface plasmon resonance spectroscopy. Biochim Biophys Acta 1434, 211–20

    Google Scholar 

  34. Park, J. K., Lee, S. O., Kim, Y. G., Kim, S. H., Koh, G. Y., Cho, K. W. (2002). Role of rho-kinase activity in angiotensin II-induced contraction of rabbit clitoral cavernosum smooth muscle. Int J Impot Res 14, 472–7

    Article  Google Scholar 

  35. Pfitzer, G. (2001). Invited review: regulation of myosin phosphorylation in smooth muscle. J Appl Physiol 91, 497–503

    Google Scholar 

  36. Renieri, G., Choritz, L., Rosenthal, R., Meissner, S., Pfeiffer, N., Thieme, H. (2008). Effects of endothelin-1 on calcium-independent contraction of bovine trabecular meshwork. Graefes Arch Clin Exp Ophthalmol

    Article  Google Scholar 

  37. Riethmuller, C., Jungmann, P., Wegener, J., Oberleithner, H. (2006). Bradykinin shifts endothelial fluid passage from para- to transcellular routes. Pflugers Arch 453, 157–65

    Article  Google Scholar 

  38. Sahai, E., Olson, M. F., Marshall, C. J. (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. Embo J 20, 755–66

    Article  Google Scholar 

  39. Samarin, S. N., Ivanov, A. I., Flatau, G., Parkos, C. A., Nusrat, A. (2007). Rho/Rho-associated kinase-II signaling mediates disassembly of epithelial apical junctions. Mol Biol Cell 18, 3429–39

    Article  Google Scholar 

  40. Schafer, A., Radmacher, M. (2005). Influence of myosin II activity on stiffness of fibroblast cells. Acta Biomater 1, 273–80

    Article  Google Scholar 

  41. Schmitz, A. A., Govek, E. E., Bottner, B., Van Aelst, L. (2000). Rho GTPases: signaling, migration, and invasion. Exp Cell Res 261, 1–12

    Article  Google Scholar 

  42. Schuck, P. (1997). Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct 26, 541–66

    Article  Google Scholar 

  43. Shigematsu, S., Ishida, S., Gute, D. C., Korthuis, R. J. (2002). Bradykinin-induced proinflammatory signaling mechanisms. Am J Physiol Heart Circ Physiol 283, H2676–86

    Google Scholar 

  44. Somlyo, A. P., Somlyo, A. V. (2000). Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 522(Pt 2), 177–85

    Article  Google Scholar 

  45. Tanaka, M., Hiragun, T., Tsutsui, T., Yanase, Y., Suzuki, H., Hide, M. (2008). Surface plasmon resonance biosensor detects the downstream events of active PKCbeta in antigen-stimulated mast cells. Biosens Bioelectron 23, 1652–8

    Article  Google Scholar 

  46. Tiruppathi, C., Ahmmed, G. U., Vogel, S. M., Malik, A. B. (2006). Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 13, 693–708

    Article  Google Scholar 

  47. Tiruppathi, C., Malik, A. B., Del Vecchio, P. J., Keese, C. R., Giaever, I. (1992). Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci U S A 89, 7919–23

    Article  Google Scholar 

  48. Tong, C. W., Kolomenskii, A., Lioubimov, V. A., Schuessler, H. A., Trache, A., Granger, H. J., Muthuchamy, M. (2001). Measurements of the cross-bridge attachment/detachment process within intact sarcomeres by surface plasmon resonance. Biochemistry 40, 13915–24

    Article  Google Scholar 

  49. Totsukawa, G., Wu, Y., Sasaki, Y., Hartshorne, D. J., Yamakita, Y., Yamashiro, S., Matsumura, F. (2004). Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 164, 427–39

    Article  Google Scholar 

  50. Van Hinsbergh, V., van Nieuw Amerongen, G. (2002). Intracellular signalling involved in modulating human endothelial barrier function. J Anat 200, 525

    Google Scholar 

  51. Ziblat, R., Lirtsman, V., Davidov, D., Aroeti, B. (2006). Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells. Biophys J 90, 2592–9

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nathalie Nguyen for help with calcium measurements. This work was supported by funds from Canadian Institutes of Health Research (E.E., F.G.), Fonds de la Recherche en Santé du Québec (E.E.), Natural Sciences and Engineering Research Council of Canada (V.A., P.C., M.G.) and Fonds Québécois de la Recherche sur la Nature et les Technologies (V.A., E.E., P.C., M.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Grandbois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuerrier, C.M., Chabot, V., Vigneux, S. et al. Surface Plasmon Resonance Monitoring of Cell Monolayer Integrity: Implication of Signaling Pathways Involved in Actin-Driven Morphological Remodeling. Cel. Mol. Bioeng. 1, 229–239 (2008). https://doi.org/10.1007/s12195-008-0028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-008-0028-4

Keywords

Navigation