Skip to main content

Advertisement

Log in

Bradykinin shifts endothelial fluid passage from para- to transcellular routes

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The signalling peptide bradykinin (BK) is implicated in inflammation and angiogenesis. It promotes fluid transport from blood vessels to interstitial space, and thus facilitates oedema formation. To clarify whether paracellular or transcellular pathways mediate this effect, we investigated the BK-stimulated fluid transport across endothelial monolayers in vitro by comparison of electrical and fluorescence methods. Electrical cell impedance sensing monitored a biphasic response of cell layers to BK with high time resolution: a short decrease (18%, 1 min) was followed by a more sustained increase in paracellular resistance (30%, 10 min). The two phases can be assigned to second messengers of the BK-signalling pathway: Ca2+ for the decrease and cyclic adenosine monophosphate for the rise of resistance, respectively. Despite tightening of the intercellular clefts, BK increased the fluid permeability by 39%, indicating transcellular fluid transport. Additionally, BK stimulated both in- and outwardly directed membrane trafficking as assessed by vesicular fluid uptake (by 49%) and secretion of von Willebrandt factor (by 85%). In conclusion, the combination of electrical and fluorescence data suggests that BK induces a shift from para- to transcellular fluid transport across endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbott NJ (2000) Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol 20:131–147

    Article  PubMed  CAS  Google Scholar 

  2. Adamson RH, Zeng M, Adamson GN, Lenz JF, Curry FE (2003) PAF- and bradykinin-induced hyperpermeability of rat venules is independent of actin–myosin contraction. Am J Physiol Heart Circ Physiol 285:H406–H417

    PubMed  CAS  Google Scholar 

  3. Atia F, Zeiske W, Van Driessche W (1999) Secretory apical Cl- channels in A6 cells: possible control by cell Ca2+ and cAMP. Pflugers Arch 438:344–353

    Article  PubMed  CAS  Google Scholar 

  4. Bogatcheva NV, Garcia JG, Verin AD (2002) Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Mosc) 67:75–84

    Article  CAS  Google Scholar 

  5. Borlongan CV, Emerich DF (2003) Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain Res Bull 60:297–306

    Article  PubMed  CAS  Google Scholar 

  6. Catizone A, Chiantore MV, Andreola F, Coletti D, Medolago AL, Alescio T (1996) Non-specific pinocytosis by human endothelial cells cultured as multicellular aggregates: uptake of lucifer yellow and horse radish peroxidase. Cell Mol Biol (Noisy-le-grand) 42:1229–1242

    CAS  Google Scholar 

  7. Chen J, Braet F, Brodsky S, Weinstein T, Romanov V, Noiri E, Goligorsky MS (2002) VEGF-induced mobilization of caveolae and increase in permeability of endothelial cells. Am J Physiol Cell Physiol 282:C1053–C1063

    PubMed  CAS  Google Scholar 

  8. Drexler HG, Quentmeier H, Dirks WG, Macleod RA (2002) Bladder carcinoma cell line ECV304 is not a model system for endothelial cells. In Vitro Cell Dev Biol Anim 38:185–186

    Article  PubMed  Google Scholar 

  9. Ek CJ, Habgood MD, Dziegielewska KM, Potter A, Saunders NR (2001) Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica. J Physiol 536:841–853

    Article  PubMed  CAS  Google Scholar 

  10. Emanueli C, Grady EF, Madeddu P, Figini M, Bunnett NW, Parisi D, Regoli D, Geppetti P (1998) Acute ACE inhibition causes plasma extravasation in mice that is mediated by bradykinin and substance P. Hypertension 31:1299–1304

    PubMed  CAS  Google Scholar 

  11. Farmer PJ, Bernier SG, Lepage A, Guillemette G, Regoli D, Sirois P (2001) Permeability of endothelial monolayers to albumin is increased by bradykinin and inhibited by prostaglandins. Am J Physiol Lung Cell Mol Physiol 280:L732–L738

    PubMed  CAS  Google Scholar 

  12. Feng D, Nagy JA, Hipp J, Pyne K, Dvorak HF, Dvorak AM (1997) Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores. J Physiol 504(Pt 3):747–761

    Article  PubMed  CAS  Google Scholar 

  13. Freay A, Johns A, Adams DJ, Ryan US, Van Breemen C (1989) Bradykinin and inositol 1,4,5-trisphosphate-stimulated calcium release from intracellular stores in cultured bovine endothelial cells. Pflügers Arch 414:377–384

    Article  PubMed  CAS  Google Scholar 

  14. Giaever I, Keese CR (1991) Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci U S A 88:7896–7900

    Article  PubMed  CAS  Google Scholar 

  15. Golser R, Gorren AC, Leber A, Andrew P, Habisch HJ, Werner ER, Schmidt K, Venema RC, Mayer B (2000) Interaction of endothelial and neuronal nitric-oxide synthases with the bradykinin B2 receptor. Binding of an inhibitory peptide to the oxygenase domain blocks uncoupled NADPH oxidation. J Biol Chem 275:5291–5296

    Article  PubMed  CAS  Google Scholar 

  16. Gratton JP, Lin MI, Yu J, Weiss ED, Jiang ZL, Fairchild TA, Iwakiri Y, Groszmann R, Claffey KP, Cheng YC, Sessa WC (2003) Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 4:31–39

    Article  PubMed  CAS  Google Scholar 

  17. Hashizume K, Black KL (2002) Increased endothelial vesicular transport correlates with increased blood–tumor barrier permeability induced by bradykinin and leukotriene C4. J Neuropathol Exp Neurol 61:725–735

    PubMed  CAS  Google Scholar 

  18. Hippenstiel S, Witzenrath M, Schmeck B, Hocke A, Krisp M, Krull M, Seybold, J, Seeger W, Rascher W, Schutte H, Suttorp N (2002) Adrenomedullin reduces endothelial hyperpermeability. Circ Res 91:618–625

    Article  PubMed  CAS  Google Scholar 

  19. Hurst RD, Clark JB (1998) Alterations in transendothelial electrical resistance by vasoactive agonists and cyclic AMP in a blood–brain barrier model system. Neurochem Res 23:149–154

    Article  PubMed  CAS  Google Scholar 

  20. Johannes L, Lamaze C (2002) Clathrin-dependent or not: is it still the question? Traffic 3:443–451

    Article  PubMed  CAS  Google Scholar 

  21. Langer F, Morys-Wortmann C, Kusters B, Storck J (1999) Endothelial protease-activated receptor-2 induces tissue factor expression and von Willebrand factor release. Br J Haematol 105:542–550

    Article  PubMed  CAS  Google Scholar 

  22. Liebmann C, Graness A, Ludwig B, Adomeit A, Boehmer A, Boehmer FD, Nurnberg B, Wetzker R (1996) Dual bradykinin B2 receptor signalling in A431 human epidermoid carcinoma cells: activation of protein kinase C is counteracted by a GS-mediated stimulation of the cyclic AMP pathway. Biochem J 313(Pt 1):109–118

    PubMed  CAS  Google Scholar 

  23. Lum H, Malik AB (1994) Regulation of vascular endothelial barrier function. Am J Physiol 267:L223–L241

    PubMed  CAS  Google Scholar 

  24. Marceau F, Regoli D (2004) Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 3:845–852

    Article  PubMed  CAS  Google Scholar 

  25. Marceau F, Sabourin T, Houle S, Fortin JP, Petitclerc E, Molinaro G, Adam A (2002) Kinin receptors: functional aspects. Int Immunopharmacol 2:1729–1739

    Article  PubMed  CAS  Google Scholar 

  26. Mcdonald DM, Thurston G, Baluk P (1999) Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation 6:7–22

    Article  PubMed  CAS  Google Scholar 

  27. Minshall RD, Tiruppathi C, Vogel SM, Malik AB (2002) Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol 117:105–112

    Article  PubMed  CAS  Google Scholar 

  28. Moy AB, Winter M, Kamath A, Blackwell K, Reyes G, Giaever I, Keese C, Shasby DM (2000) Histamine alters endothelial barrier function at cell–cell and cell–matrix sites. Am J Physiol Lung Cell Mol Physiol 278:L888–L898

    PubMed  CAS  Google Scholar 

  29. Neal CR, Michel CC (1995) Transcellular gaps in microvascular walls of frog and rat when permeability is increased by perfusion with the ionophore A23187. J Physiol 488(Pt 2):427–437

    PubMed  CAS  Google Scholar 

  30. Oberleithner H, Ludwig T, Riethmuller C, Hillebrand U, Albermann L, Schafer C, Shahin V, Schillers H (2004) Human endothelium: target for aldosterone. Hypertension 43:952–956

    Article  PubMed  CAS  Google Scholar 

  31. Palade GE, Bruns RR (1968) Structural modulations of plasmalemmal vesicles. J Cell Biol 37:633–649

    Article  PubMed  CAS  Google Scholar 

  32. Paradiso AM, Cheng EH, Boucher RC (1991) Effects of bradykinin on intracellular calcium regulation in human ciliated airway epithelium. Am J Physiol 261:L63–L69

    PubMed  CAS  Google Scholar 

  33. Schnittler HJ, Schneider SW, Raifer H, Luo F, Dieterich P, Just I, Aktories K (2001) Role of actin filaments in endothelial cell–cell adhesion and membrane stability under fluid shear stress. Pflügers Arch 442:675–687

    Article  PubMed  CAS  Google Scholar 

  34. Sharma HS (2000) A bradykinin BK2 receptor antagonist HOE-140 attenuates blood–spinal cord barrier permeability following a focal trauma to the rat spinal cord. An experimental study using Evans blue, [131]I-sodium and lanthanum tracers. Acta Neurochir Suppl 76:159–163

    PubMed  CAS  Google Scholar 

  35. Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932

    PubMed  CAS  Google Scholar 

  36. Verkman AS (2002) Aquaporin water channels and endothelial cell function. J Anat 200:617–627

    Article  PubMed  CAS  Google Scholar 

  37. Vestweber D (2000) Molecular mechanisms that control endothelial cell contacts. J Pathol 190:281–291

    Article  PubMed  CAS  Google Scholar 

  38. Wegener J, Hakvoort A, Galla HJ (2000) Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Res 853:115–124

    Article  PubMed  CAS  Google Scholar 

  39. Wegener J, Zink S, Rosen P, Galla H (1999) Use of electrochemical impedance measurements to monitor beta-adrenergic stimulation of bovine aortic endothelial cells. Pflügers Arch 437:925–934

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Deutsche Forschungsgemeinschaft [SFB 629 (A6) and DFG Re 1284/2-1]. We thank Mrs. Marianne Wilhelmi for excellent technical assistance and Dr. S.W. Schneider, Dr. R. Ossig, Dr. T. Ludwig and C. Rommel for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Riethmüller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riethmüller, C., Jungmann, P., Wegener, J. et al. Bradykinin shifts endothelial fluid passage from para- to transcellular routes. Pflugers Arch - Eur J Physiol 453, 157–165 (2006). https://doi.org/10.1007/s00424-006-0121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0121-2

Keywords

Navigation