Skip to main content
Log in

Simple noise reduction for diffusion weighted images

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Our purpose in this study was to reduce the noise in order to improve the SNR of Dw images with high b-value by using two correction schemes. This study was performed with use of phantoms made from water and sucrose at different concentrations, which were 10, 30, and 50 weight percent (wt%). In noise reduction for Dw imaging of the phantoms, we compared two correction schemes that are based on the Rician distribution and the Gaussian distribution. The highest error values for each concentration with use of the Rician distribution scheme were 7.3 % for 10 wt%, 2.4 % for 30 wt%, and 0.1 % for 50 wt%. The highest error values for each concentration with use of the Gaussian distribution scheme were 20.3 % for 10 wt%, 11.6 % for 30 wt%, and 3.4 % for 50 wt%. In Dw imaging, the noise reduction makes it possible to apply the correction scheme of Rician distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval Jeantet M. MR Imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    Article  PubMed  Google Scholar 

  2. Assaf Y, Ben-Bashat D, Chapman J, Peled S, Biton IE, et al. High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis. Magn Reson Med. 2002;47:115–26.

    Article  CAS  PubMed  Google Scholar 

  3. Fieremans Els, Jensen JH, Helpern JA. White matter characterization with diffusional kurtosis imaging. NeuroImage. 2011;58:177–88.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ohno N, Miyati T, Kobayashi S, Gabata T. Modified triexponential analysis of intravoxel incoherent motion for brain perfusion and diffusion. J Magn Reson Imaging. 2015;. doi:10.1002/jmri.25048.

    Google Scholar 

  5. Gatidis S, Schmidt H, Martiosian P, Nikolaou K, Schwenzer NF. Apparent diffusion coefficient-dependent voxelwise computed diffusion-weighted imaging: an approach for improving SNR and reducing T 2 shine-through effects. J Magn Reson Imaging. 2015;. doi:10.1002/jmri.25044.

    Google Scholar 

  6. Dietrich O, Heiland S, Sartor K. Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med. 2001;45:448–53.

    Article  CAS  PubMed  Google Scholar 

  7. Bastin ME, Armitage PA, Marshall I. Atheoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. Magn Reson Imaging. 1998;16:773–85.

    Article  CAS  PubMed  Google Scholar 

  8. Henkelman RM. Measurement of signal intensities in the presence of noise MR images. Med Phys. 1985;12(2):232–3.

    Article  CAS  PubMed  Google Scholar 

  9. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med. 1995;34(6):910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yokoo T, Yuan Q, Senegas J, Wiethoff AJ, Pedrosa I. Quantitative R2* MRI of the liver With Rician noise models for evaluation of hepatic iron overload: simulation, phantom, and early clinical experience. J Magn Reson Imaging. 2015;. doi:10.1002/jmri.24948.

    PubMed  Google Scholar 

  11. Taylor PA, Biwal B. Geometric analysis of the b-dependent effects of Rician signal noise on diffusion tensor imaging estimates and determining an optimal b-value. Magn Reson Imaging. 2011;29:777–88.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tamura T, Usui S, Akiyama S. Investigation of a phantom for diffusion weighted imaging that contorolled the apparent diffusion coefficient using gelatin and sucrose. Nihon houshasen Gijutu Gakkai Zasshi. 2009;65(11):1485–93.

    Article  CAS  Google Scholar 

  13. Robert I, DeLaPaz MD. Echo planner imaging. RadioGraphics. 1994;14(5):1045–58.

    Article  Google Scholar 

  14. Wilm BJ, Nagy Z, Barnet C, Vannesjo SJ, Kasper L, Haeberlin M, et al. Diffusion MRI with concurrent magnetic field monitoring. Magn Reson Med. 2015;74:925–33.

    Article  CAS  PubMed  Google Scholar 

  15. Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med. 2003;49:177–82.

    Article  CAS  PubMed  Google Scholar 

  16. Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med. 2002;47:42–52.

    Article  PubMed  Google Scholar 

  17. Kristoffersen A. Statistical assessment of non-gaussian diffusion models. Magn Reson Med. 2011;66:1639–48.

    Article  PubMed  Google Scholar 

  18. Andersen AH. On the Rician distribution of noisy MRI Data. Magn Reson Med. 1996;36:331–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Kanazawa.

Ethics declarations

Conflict of interest

An author, Tsuyoshi Matsuda, is an employee of the GE Healthcare Corporation, Tokyo, Japan. All remaining authors have declared no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konishi, Y., Kanazawa, Y., Usuda, T. et al. Simple noise reduction for diffusion weighted images. Radiol Phys Technol 9, 221–226 (2016). https://doi.org/10.1007/s12194-016-0350-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-016-0350-9

Keywords

Navigation