Skip to main content
Log in

The discovery of Hsp70 domain with cell-penetrating activity

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Chaperone Hsp70 can cross the plasma membrane of living cells using mechanisms that so far have not received much research attention. Searching the part of the molecule that is responsible for transport ability of Hsp70, we found a cationic sequence composed of 20 amino acid residues on its surface, KST peptide, which was used in further experiments. We showed that KST peptide enters living cells of various origins with the same efficiency as the full-length chaperone. KST peptide is capable of carrying cargo with a molecular weight 30 times greater than its own into cells. When we compared the membrane-crossing activity of KST peptide in complex with Avidin (KST–Av complex) with that of similarly linked canonical TAT peptide, we found that TAT peptide penetrated SK-N-SH human neuroblastoma cells at a similar rate and efficiency as the KST peptide. Furthermore, KST peptide can carry protein complexes consisting of a specific antibody coupled to the peptide through the Avidin bridge. An antibody to Hsp70 delivered to SK-N-SH cells with high expression level of Hsp70 reduced the protective power of the chaperone and sensitized the cells to the pro-apoptotic effect of staurosporine. We studied the mechanisms of penetration of KST–Av and full-length Hsp70 inside human neuroblastoma SK-N-SH and human erythroleukemia K-562 cells and found that both used an active intracellular transport mechanism that included vesicular structures and negatively charged lipid membrane domains. Competition analysis of intracellular transport showed that the chaperone reduced intracellular penetration of KST peptide and conversely KST peptide prevented Hsp70 transport in a dose-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afanasyeva EA, Komarova EY, Larsson LG, Bahram F, Margulis BA, Guzhova IV (2007) Drug-induced Myc-mediated apoptosis of cancer cells is inhibited by stress protein Hsp70. Int J Cancer 121(12):2615–2621

    Article  CAS  PubMed  Google Scholar 

  • Alder GM, Austen BM, Bashford CL, Mehlert A, Pasternak CA (1990) Heat shock proteins induce pores in membranes. Biosci Rep 10(6):509–518

    Article  CAS  PubMed  Google Scholar 

  • Aleksandrova MA, Revishchin AV, Podgornyi OV, Poltavtseva RA, Marei MV, Korochkin LI, Sukhikh GT (2004) Transplantation of cultured neural cells from human fetuses into the brain of rats exposed to acute hypoxia. Bull Exp Biol Med 137(3):262–265

    Article  CAS  PubMed  Google Scholar 

  • Arispe N, Doh M, De Maio A (2002) Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 7(4):330–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6(4):435–442

    Article  CAS  PubMed  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70:role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277(17):15028–15034

  • Barreto A, Gonzalez JM, Kabingu E, Asea A, Fiorentino S (2003) Stress-induced release of HSC70 from human tumors. Cell Immunol 222(2):97–104

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14(3):303–313

    Article  CAS  PubMed  Google Scholar 

  • Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158(7):1277–1285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bitler BG, Schroeder JA (2010) Anti-cancer therapies that utilize cell penetrating peptides. Recent Patent Anticancer Drug Discov 5(2):99–108

    Article  CAS  Google Scholar 

  • Bolhassani A (2011) Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta 1816(2):232–246

    CAS  PubMed  Google Scholar 

  • Brooks H, Lebleu B, Vivès E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57(4):559–577

    Article  CAS  PubMed  Google Scholar 

  • Calderwood SK, Mambula SS, Gray PJ Jr, Theriault JR (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett 581(19):3689–3694

    Article  CAS  PubMed  Google Scholar 

  • Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120(2):457–571

    PubMed Central  CAS  PubMed  Google Scholar 

  • Console S, Marty C, García-Echeverría C, Schwendener R, Ballmer-Hofer K (2003) Antennapedia and HIV transactivator of transcription (TAT) “protein transductiondomains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 278(37):35109–35114

    Article  CAS  PubMed  Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J, Jeannin P (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17(3):353–362

    Article  CAS  PubMed  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450

    CAS  PubMed  Google Scholar 

  • Deshayes S, Plénat T, Charnet P, Divita G, Molle G, Heitz F (2006) Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochim Biophys Acta 1758(11):1846–1851

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed A, Futaki S, Harashima H (2009) Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 11(1):13–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evdonin AL, Guzhova IV, Margulis BA, Medvedeva ND (2004) Phospholipase c inhibitor, u73122, stimulates release of hsp-70 stress protein from A431 human carcinoma cells. Cancer Cell Int 4(1):2

    Article  PubMed Central  PubMed  Google Scholar 

  • Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276(8):5836–5840

    Article  CAS  PubMed  Google Scholar 

  • Gabai VL, Zamulaeva IV, Mosin AF, Makarova YM, Mosina VA, Budagova KR, Malutina YV, Kabakov AE (1995) Resistance of Ehrlich tumor cells to apoptosis can be due to accumulation of heat shock proteins. FEBS Lett 375(1–2):21–26

    Article  CAS  PubMed  Google Scholar 

  • Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65(12):5238–5247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gross C, Schmidt-Wolf IG, Nagaraj S, Gastpar R, Ellwart J, Kunz-Schughart LA, Multhoff G (2003) Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones 8(4):348–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guzhova IV, Darieva ZA, Melo AR, Margulis BA (1997) Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2(2):132–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914(1–2):66–73

    Article  CAS  PubMed  Google Scholar 

  • Guzhova IV, Lazarev VF, Kaznacheeva AV, Ippolitova MV, Muronetz VI, Kinev AV, Margulis BA (2011) Novel mechanism of Hsp70 chaperone-mediated prevention of polyglutamine aggregates in a cellular model of Huntington disease. Hum Mol Genet 20(20):3953–3963

    Article  CAS  PubMed  Google Scholar 

  • Guzhova IV, Shevtsov MA, Abkin SV, Pankratova KM, Margulis BA (2013) Intracellular and extracellular Hsp70 chaperone as a target for cancer therapy. Int J Hyperthermia 29(5):399–408

    Article  CAS  PubMed  Google Scholar 

  • Harada Y, Sato C, Kitajima K (2007) Complex formation of 70-kDa heat shock protein with acidic glycolipids and phospholipids. Biochem Biophys Res Commun 353(3):655–660

    Article  CAS  PubMed  Google Scholar 

  • Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138(2):257–266

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Ignatovich IA, Dizhe EB, Pavlotskaya AV, Akifiev BN, Burov SV, Orlov SV, Perevozchikov AP (2003) Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways. J Biol Chem 278(43):42625–42636

    Article  CAS  PubMed  Google Scholar 

  • Jäättelä M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248(1):30–43

    Article  PubMed  Google Scholar 

  • Jeang KT, Xiao H, Rich EA (1999) Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 274(41):28837–28840

    Article  CAS  PubMed  Google Scholar 

  • Kersemans V, Kersemans K, Cornelissen B (2008) Cell penetrating peptides for in vivo molecular imaging applications. Curr Pharm Des 14(24):2415–2447

    Article  CAS  PubMed  Google Scholar 

  • Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37:D387–D392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Komarova EY, Afanasyeva EA, Bulatova MM, Cheetham ME, Margulis BA, Guzhova IV (2004) Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell Stress Chaperones 9(3):265–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kopp J, Schwede T (2004) The SWISS-MODEL repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res 32:D230–D234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18(7):385–393

    Article  CAS  PubMed  Google Scholar 

  • Lasunskaia EB, Fridlianskaia II, Guzhova IV, Bozhkov VM, Margulis BA (1997) Accumulation of major stress protein 70 kDa protects myeloid and lymphoid cells from death by apoptosis. Apoptosis 2(2):156–163

    Article  CAS  PubMed  Google Scholar 

  • Lindgren M, Langel U (2011) Classes and prediction of cell penetrating peptides. Methods Mol Biol 683:3–19

    Article  CAS  PubMed  Google Scholar 

  • Madani F, Lindberg S, Langel U, Futaki S, Gräslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729

    Article  PubMed Central  PubMed  Google Scholar 

  • Mambula SS, Stevenson MA, Ogawa K, Calderwood SK (2007) Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 43(3):168–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Botzler C, Wiesnet M, Müller E, Meier T, Wilmanns W, Issels RD (1995) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61(2):272–279

    Article  CAS  PubMed  Google Scholar 

  • Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jäättelä M (2000) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci U S A 97(14):7871–7876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shevtsov MA, Komarova EY, Meshalkina DA, Bychkova NV, Aksenov ND, Abkin SV, Margulis BA, Guzhova IV (2014) Exogenously delivered heat shock protein 70 displaces its endogenous analogue and sensitizes cancer cells to lymphocytes-mediated cytotoxicity. Oncotarget 5(10):3101–3114

    PubMed Central  PubMed  Google Scholar 

  • Thériault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK (2005) Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 579(9):1951–1960

    Article  PubMed  Google Scholar 

  • Thériault JR, Adachi H, Calderwood SK (2006) Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 177(12):8604–8611

    Article  PubMed  Google Scholar 

  • Tunnemann G, Martin RM, Haupt S, Patsch C, Edenhofer F, Cardoso MC (2006) Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J 20(11):1775–1784

    Article  PubMed  Google Scholar 

  • Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363(1):161–164

    Article  CAS  PubMed  Google Scholar 

  • Vega VL, Rodriguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, Multhoff G, Arispe N, De Maio A (2008) Hsp70 translocates into the plasma membrane after stress and its release into extracellular environment in membrane-associated form that activates macrophages. J Immunol 180(6):4299–4307

    Article  CAS  PubMed  Google Scholar 

  • Vega VL, Charles W, De Maio A (2010) A new feature of the stress response: increase in endocytosis mediated by Hsp70. Cell Stress Chaperones 15(5):517–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Viscidi RP, Mayur K, Lederman HM, Frankel AD (1989) Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science 246(4937):1606–1608

    Article  CAS  PubMed  Google Scholar 

  • Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6(4):386–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F (2014) Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release 174:126–136

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DS, Dunsmore KE, Wong HR (2003) Intracellular delivery of HSP70 using HIV-1 Tat protein transduction domain. Biochem Biophys Res Commun 301(1):54–59

    Article  CAS  PubMed  Google Scholar 

  • Ziegler A, Nervi P, Durrenberger M, Seelig J (2005) The cationic cell-penetrating peptide CPP TAT derived from the HIV-1 protein Tat is rapidly transported into living fibroblasts: optical, biophysical and metabolic evidence. Biochemistry 44(1):138–148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. N. Fusenig (DKFZ, Germany) for HaCaT cells; Dr. Marja Jäättelä for providing us with hsp70 plasmid; Dr. Oleg Demidov (INSERM, France) for rab-5, rab-7, and mito-PAGFP plasmids; Mr. Michael Vorobyev and Dr. Gregory Shtein (Institute of Cytology of RAS, Russia) for the help with confocal microscopy experiments; and Ms. Ekaterina Fedorova for technical assistance. This work was supported by grants from the Russian Foundation of Basic Research 14-08-00164 and 13-04-01299 and of the Molecular and Cell Biology Program of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Guzhova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3851 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarova, E.Y., Meshalkina, D.A., Aksenov, N.D. et al. The discovery of Hsp70 domain with cell-penetrating activity. Cell Stress and Chaperones 20, 343–354 (2015). https://doi.org/10.1007/s12192-014-0554-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-014-0554-z

Keywords

Navigation