Skip to main content

Advertisement

Log in

Heat shock proteins and survival strategies in congeneric land snails (Sphincterochila) from different habitats

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Polmunate land snails are subject to stress conditions in their terrestrial habitat, and depend on a range of behavioural, physiological and biochemical adaptations for coping with problems of maintaining water, ionic and thermal balance. The involvement of the heat shock protein (HSP) machinery in land snails was demonstrated following short-term experimental aestivation and heat stress, suggesting that land snails use HSPs as part of their survival strategy. As climatic variation was found to be associated with HSP expression, we tested whether adaptation of land snails to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desert species Sphincterochila zonata and a Mediterranean-type species Sphincterochila cariosa. Our study suggests that Sphincterochila species use HSPs as part of their survival strategy following desiccation and heat stress, and as part of the natural annual cycle of activity and aestivation. Our studies also indicate that adaptation to different habitats results in the development of distinct strategies of HSP expression in response to stress, namely the reduced expression of HSPs in the desert-inhabiting species. We suggest that these different strategies reflect the difference in heat and aridity encountered in the natural habitats, and that the desert species S. zonata relies on mechanisms and adaptations other than HSP induction thus avoiding the fitness consequences of continuous HSP upregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arad Z (2009) Resistance to desiccation and heat. In: Heller J (ed) Landsnails of the land of Israel. Pensoft, Sofia, pp 74–93

    Google Scholar 

  • Arad Z, Goldenberg S, Heller J (1989) Resistance to desiccation and distribution patterns in the land snail Sphincterochila. J Zool (Lond) 218:353–364

    Article  Google Scholar 

  • Arad Z, Goldenberg S, Heller J (1992) Intraspecific variation in resistance to desiccation and climatic gradients in the distribution of the land snail Xeropicta vestalis. J Zool (Lond) 226:643–656

    Article  Google Scholar 

  • Arad Z, Goldenberg S, Avivi TR, Heller J (1993a) Intraspecific variation in resistance to desiccation in the land snail Theba pisana. Int J Biometeorol 37:183–189

    Article  Google Scholar 

  • Arad Z, Goldenberg S, Heller J (1993b) Intraspecific variation in resistance to desiccation and climatic gradients in the distribution of the bush-dwelling land snail Trochoidea simulata. J Zool (Lond) 229:249–265

    Article  Google Scholar 

  • Arad Z, Mizrahi T, Goldenberg S, Heller J (2010) Natural annual cycle of heat shock proteins expression in land snails: desert vs Mediterranean species of Sphincterochila. J Exp Biol 213:3487–3495

    Article  PubMed  CAS  Google Scholar 

  • Bahrndorff S, Marien J, Loeschcke V, Ellers J (2009) Dynamics of heat-induced thermal stress resistance and Hsp70 expression in the springtail, Orchesella cincta. Funct Ecol 23:233–239

    Article  Google Scholar 

  • Bettencourt BR, Feder ME, Cavicchi S (1999) Experimental evolution of HSP70 expression and thermotolerance in Drosophila melanogaster. Evolution 53:484–492

    Article  CAS  Google Scholar 

  • Brooks SP, Storey KB (1995) Evidence for aestivation specific proteins in Otala lactea. Mol Cell Biochem 143(1):15–20

    Article  PubMed  CAS  Google Scholar 

  • Cameron RAD (1970) The survival, weight-loss and behaviour of three species of land snail in conditions of low humidity. J Zool (Lond) 160:143–157

    Article  Google Scholar 

  • Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79(2):129–168

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Miller LP, Sanders JG, Somero GN (2008) Heat-shock protein 70 (Hsp70) expression in four limpets of the genus Lottia: interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress. Biol Bull 215(2):173–181

    Article  PubMed  Google Scholar 

  • Edgerly JS, Tadimalla A, Dahlhoff EP (2005) Adaptation to thermal stress in lichen-eating webspinners (Embioptera): habitat choice, domicile construction and the potential role of heat shock proteins. Funct Ecol 19:255–262

    Article  Google Scholar 

  • Evgen'ev MB, Garbuz DG, Shilova VY, Zatsepina OG (2007) Molecular mechanisms underlying thermal adaptation of xeric animals. J Biosci 32(3):489–499

    Article  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Ann Rev Physiol 61:243–282

    Article  CAS  Google Scholar 

  • Haap T, Köhler HR (2009) Cadmium tolerance in seven Daphnia magna clones is associated with reduced Hsp70 baseline levels and induction. Aquat Toxicol 94:131–137

    Article  PubMed  CAS  Google Scholar 

  • Karl I, Sørensen JG, Loeschcke V, Fischer K (2009) HSP70 expression in the Copper butterfly Lycaena tityrus across altitudes and temperatures. J Evol Biol 22:172–178

    Article  PubMed  CAS  Google Scholar 

  • Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80(2):183–201

    Article  PubMed  CAS  Google Scholar 

  • Köhler HR, Zanger M, Eckwert H, Einfeldt I (2000) Selection favours low hsp70 levels in chronically metal-stressed soil arthropods. J Evol Biol 13:569–582

    Article  Google Scholar 

  • Köhler HR, Lazzara R, Dittbrenner N, Capowiez Y, Mazzia C, Triebskorn R (2009) Snail phenotypic variation and stress proteins: do different heat response strategies contribute to Waddington's widget in field populations? J Exp Zool B Mol Dev Evol 312(2):136–147

    Article  PubMed  Google Scholar 

  • Krebs RA, Bettencourt BR (1999) Evolution of thermotolerance and variation in the heat shock protein, Hsp70. Am Zool 39:910–919

    CAS  Google Scholar 

  • Krebs RA, Feder ME (1997) Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperones 2(1):60–71

    Article  PubMed  CAS  Google Scholar 

  • Krebs RA, Loeschcke V (1994) Costs and benefits of activation of the heat shock response in Drosophila melanogaster. Funct Ecol 8:730–737

    Article  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92(5):2177–2186

    PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Ann Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Ann Rev Gen 22:631–677

    Article  CAS  Google Scholar 

  • Lopez-Martinez G, Benoit JB, Rinehart JP, Elnitsky MA, Lee RE Jr, Denlinger DL (2009) Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic midge, Belgica antarctica. J Comp Physiol B 179(4):481–491

    Article  PubMed  CAS  Google Scholar 

  • Machin J (1967) Structural adaptation for reducing water-loss in three species of terrestrial snails. J Zool (Lond) 152:55–65

    Article  Google Scholar 

  • Mizrahi T, Heller J, Goldenberg S, Arad Z (2010) Heat shock proteins and resistance to desiccation in congeneric land snails. Cell Stress Chaperones 15:351–363. doi:10.1007/s12192-009-0150-9

    Article  PubMed  CAS  Google Scholar 

  • Mizrahi T, Heller J, Goldenberg S, Arad Z (2011) Heat shock protein expression in relation to reproductive cycle in land snails: implications for survival. Comp Biochem Physiol A Mol Integr Physiol 160(2):149–155

    Article  PubMed  CAS  Google Scholar 

  • Mizrahi T, Heller J, Goldenberg S, Arad Z (2012) The heat shock response in congeneric land snails (Sphincterochila) from different habitats. Cell Stress Chaperones (in press)

  • Moseley PL (1997) Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 83(5):1413–1417

    PubMed  CAS  Google Scholar 

  • Nakano K, Iwama G (2002) The 70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: relationship of hsp70 and thermal tolerance. Comp Biochem Physiol A 133(1):79–94

    Article  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing 'heat shock' proteins. J Cell Sci 115(Pt 14):2809–2816

    PubMed  CAS  Google Scholar 

  • Nollen EA, Brunsting JF, Roelofsen H, Weber LA, Kampinga HH (1999) In vivo chaperone activity of heat shock protein 70 and thermotolerance. Mol Cell Biol 19(3):2069–2079

    PubMed  CAS  Google Scholar 

  • Pakay JL, Withers PC, Hobbs AA, Guppy M (2002) In vivo downregulation of protein synthesis in the snail Helix apersa during estivation. Am J Physiol 283(1):R197–204

    CAS  Google Scholar 

  • Ramnanan CJ, Allan ME, Groom AG, Storey KB (2009) Regulation of global protein translation and protein degradation in aerobic dormancy. Mol Cell Biochem 323(1–2):9–20

    Article  PubMed  CAS  Google Scholar 

  • Reuner A, Brümmer F, Schill RO (2008) Heat shock proteins (Hsp70) and water content in the estivating Mediterranean Grunt Snail (Cantareus apertus). Comp Biochem Physiol B 151(1):28–31

    Article  PubMed  Google Scholar 

  • Schill RO, Steinbruck GH, Köhler HR (2004) Stress gene (hsp70) sequences and quantitative expression in Milnesium tardigradum (Tardigrada) during active and cryptobiotic stages. J Exp Biol 207(Pt 10):1607–1613

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K, Taylor CR, Shkolnik A (1971) Desert snails: problems of heat, water and food. J Exp Biol 55:385–398

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K, Taylor CR, Shkolnik A (1972) Desert snail: problems of survival. Symp Zool Soc Lond 31:1–13

    Google Scholar 

  • Silbermann R, Tatar M (2000) Reproductive costs of heat shock protein in transgenic Drosophila melanogaster. Evolution 54(6):2038–2045

    PubMed  CAS  Google Scholar 

  • Somero GN (1995) Proteins and temperature. Ann Rev Physiol 57:43–68

    Article  CAS  Google Scholar 

  • Sørensen JG, Michalak P, Justesen J, Loeschcke V (1999) Expression of the heat-shock protein HSP70 in Drosophila buzzatii lines selected for thermal resistance. Hereditas 131(2):155–164

    Article  PubMed  Google Scholar 

  • Sørensen JG, Dahlgaard J, Loeschcke V (2001) Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii: down regulation of Hsp70 expression and variation in heat stress resistance traits. Funct Ecol 15:289–296

    Article  Google Scholar 

  • Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Storey KB (2002) Life in the slow lane: molecular mechanisms of estivation. Comp Biochem Physiol A 133(3):733–754

    Article  Google Scholar 

  • Tomanek L, Somero GN (1999) Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J Exp Biol 202(Pt 21):2925–2936

    PubMed  Google Scholar 

  • Zatsepina OG, Ulmasov KA, Beresten SF, Molodtsov VB, Rybtsov SA, Evgen'ev MB (2000) Thermotolerant desert lizards characteristically differ in terms of heat-shock system regulation. J Exp Biol 203(Pt 6):1017–1025

    PubMed  CAS  Google Scholar 

  • Zatsepina OG, Velikodvorskaia VV, Molodtsov VB, Garbuz D, Lerman DN, Bettencourt BR, Feder ME, Evgenev MB (2001) A Drosophila melanogaster strain from sub-equatorial Africa has exceptional thermotolerance but decreased Hsp70 expression. J Exp Biol 204(Pt 11):1869–1881

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Carmi Korine for his assistance in desert snail collection. This work was supported by the Israel Science Foundation grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeev Arad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizrahi, T., Heller, J., Goldenberg, S. et al. Heat shock proteins and survival strategies in congeneric land snails (Sphincterochila) from different habitats. Cell Stress and Chaperones 17, 523–527 (2012). https://doi.org/10.1007/s12192-012-0341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-012-0341-7

Keywords

Navigation