Skip to main content
Log in

Response of preosteoblasts to thermal stress conditioning and osteoinductive growth factors

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Conditioning protocols involving mechanical stress independently or with chemical cues such as growth factors (GFs) possess significant potential to enhance bone regeneration. However, utilization of thermal stress conditioning alone or with GFs for bone therapy has been under-investigated. In this study, a preosteoblast cell line (MC3T3-E1) was exposed to treatment with water bath heating (44°C, 4 and 8 min) and osteoinductive GFs (bone morphogenetic protein-2 and transforming growth factor-β1) individually or in combination to investigate whether these stimuli could promote induction of bone-related markers, an angiogenic factor, and heat shock proteins (HSPs). Cells remained viable when heating durations were less than 20 min at 40ºC, 16 min at 42ºC, and 10 min at 44ºC. Increasing heating duration at 44°C, promoted gene expression of HSPs, osteocalcin (OCN), and osteopontin (OPN) at 8 h post-heating (PH). Heating in combination with GFs caused the greatest gene induction of osteoprotegerin (OPG; 6.9- and 1.6-fold induction compared to sham-treated and GF only treated groups, respectively) and vascular endothelial growth factor (VEGF; 16.0- and 1.6-fold compared to sham and GF-only treated groups, respectively) at 8 h PH. Both heating and GFs independently suppressed the matrix metalloproteinase-9 (MMP-9) gene. GF treatment caused a more significant decrease in MMP-9 protein secretion to non-detectable levels compared to heating alone at 72 h PH. Secretion of OCN, OPN, and OPG increased with the addition of GFs but diminished with heating as measured by ELISA at 72 h PH. These results suggest that conditioning protocols utilizing heating and GFs individually or in combination can induce HSPs, bone-related proteins, and VEGF while also causing downregulation of osteoclastic activity, potentially providing a promising bone therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Teitelbaum SL (2000) Osteoclasts, integrins, and osteoporosis. J Bone Miner Metab 18(6):344–349

    Article  PubMed  CAS  Google Scholar 

  • Singh SP et al (2007) Cyclic mechanical strain increases production of regulators of bone healing in cultured murine osteoblasts. J Am Coll Surg 204(3):426–434

    Article  PubMed  Google Scholar 

  • Sharp LA, Lee YW, Goldstein AS (2009) Effect of low-frequency pulsatile flow on expression of osteoblastic genes by bone marrow stromal cells. Ann Biomed Eng 37(3):445–453

    Article  PubMed  Google Scholar 

  • Choi JY et al (1996) Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J Cell Biochem 61(4):609–618

    Article  PubMed  CAS  Google Scholar 

  • Kandziora F et al (2002) IGF-I and TGF-beta1 application by a poly-(D,L-lactide)-coated cage promotes intervertebral bone matrix formation in the sheep cervical spine. Spine (Phila Pa 1976) 27(16):1710–1723

    Article  Google Scholar 

  • Wei G et al (2007) The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 28(12):2087–2096

    Article  PubMed  CAS  Google Scholar 

  • Jeong JC et al (2004) Drynariae Rhizoma promotes osteoblast differentiation and mineralization in MC3T3-E1 cells through regulation of bone morphogenetic protein-2, alkaline phosphatase, type I collagen and collagenase-1. Toxicol In Vitro 18(6):829–834

    Article  PubMed  CAS  Google Scholar 

  • Zhang F et al (2009) Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J Bone Miner Res 24(7):1224–1233

    Article  PubMed  CAS  Google Scholar 

  • Ryoo HM, Lee MH, Kim YJ (2006) Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 366(1):51–57

    Article  PubMed  CAS  Google Scholar 

  • Spinella-Jaegle S et al (2001) Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone 29(4):323–330

    Article  PubMed  CAS  Google Scholar 

  • Peterson WJ, Tachiki KH, Yamaguchi DT (2004) Serial passage of MC3T3-E1 cells down-regulates proliferation during osteogenesis in vitro. Cell Prolif 37(5):325–336

    Article  PubMed  CAS  Google Scholar 

  • Carano RA, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8(21):980–989

    Article  PubMed  CAS  Google Scholar 

  • Dai J, Rabie AB (2007) VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res 86(10):937–950

    Article  PubMed  CAS  Google Scholar 

  • Street J et al (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 99(15):9656–9661

    Article  PubMed  CAS  Google Scholar 

  • Harder Y et al (2004) Improved skin flap survival after local heat preconditioning in pigs. J Surg Res 119(1):100–105

    Article  PubMed  CAS  Google Scholar 

  • Riederer I et al (2008) Heat shock treatment increases engraftment of transplanted human myoblasts into immunodeficient mice. Transplant Proc 40(2):624–630

    Article  PubMed  CAS  Google Scholar 

  • Hojo T et al (2003) Effect of heat stimulation on viability and proteoglycan metabolism of cultured chondrocytes: preliminary report. J Orthop Sci 8(3):396–399

    Article  PubMed  Google Scholar 

  • Lee MW et al (2008) Heat stress induces alkaline phosphatase activity and heat shock protein 25 expression in cultured pulp cells. Int Endod J 41(2):158–162

    PubMed  CAS  Google Scholar 

  • Wang S et al (2008) HSP70 kinetics study by continuous observation of HSP-GFP fusion protein expression on a perfusion heating stage. Biotechnol Bioeng 99(1):146–154

    Article  PubMed  CAS  Google Scholar 

  • Rylander MN et al (2005) Correlation of HSP70 expression and cell viability following thermal stimulation of bovine aortic endothelial cells. J Biomech Eng 127(5):751–757

    Article  PubMed  Google Scholar 

  • Shui C, Scutt A (2001) Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63 cells in vitro. J Bone Miner Res 16(4):731–741

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K et al (2009) Influence of heat stress to matrix on bone formation. Clin Oral Implants Res 20:782–790

    Article  PubMed  Google Scholar 

  • Ye CP et al (2007) Culture media conditioned by heat-shocked osteoblasts enhances the osteogenesis of bone marrow-derived mesenchymal stromal cells. Cell Biochem Funct 25(3):267–276

    Article  PubMed  CAS  Google Scholar 

  • Leon SA et al (1993) Effects of hyperthermia on bone. II. Heating of bone in vivo and stimulation of bone growth. Int J Hyperthermia 9(1):77–87

    Article  PubMed  CAS  Google Scholar 

  • Mestril R et al (1994) Isolation of a novel inducible rat heat-shock protein (HSP70) gene and its expression during ischaemia/hypoxia and heat shock. Biochem J 298(Pt 3):561–569

    PubMed  CAS  Google Scholar 

  • Wang S, Diller KR, Aggarwal SJ (2003) Kinetics study of endogenous heat shock protein 70 expression. J Biomech Eng 125(6):794–797

    Article  PubMed  Google Scholar 

  • Lee J et al (2009) Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction. J Control Release 137(3):196–202

    Article  PubMed  CAS  Google Scholar 

  • Cooper LF et al (2000) Estrogen-induced resistance to osteoblast apoptosis is associated with increased hsp27 expression. J Cell Physiol 185(3):401–407

    Article  PubMed  CAS  Google Scholar 

  • Hebb MO, Myers TL, Clarke DB (2006) Enhanced expression of heat shock protein 27 is correlated with axonal regeneration in mature retinal ganglion cells. Brain Res 1073–1074:146–150

    Article  PubMed  Google Scholar 

  • Laplante AF et al (1998) Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem 46(11):1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Russotti G et al (1997) Studies of heat and PGA(1)-induced cold tolerance show that HSP27 may help preserve actin morphology during hypothermia. Tissue Engineering 3(2):135–147

    Article  CAS  Google Scholar 

  • Lanneau D et al (2007) Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 1(1):53–60

    Article  PubMed  Google Scholar 

  • Hatakeyama D et al (2002) Upregulation by retinoic acid of transforming growth factor-beta-stimulated heat shock protein 27 induction in osteoblasts: involvement of mitogen-activated protein kinases. Biochim Biophys Acta 1589(1):15–30

    Article  PubMed  CAS  Google Scholar 

  • Cooper LF, Uoshima K (1994) Differential estrogenic regulation of small M(r) heat shock protein expression in osteoblasts. J Biol Chem 269(11):7869–7873

    PubMed  CAS  Google Scholar 

  • Tokuda H et al (2003) Involvement of stress-activated protein kinase/c-Jun N-terminal kinase in endothelin-1-induced heat shock protein 27 in osteoblasts. Eur J Endocrinol 149(3):239–245

    Article  PubMed  CAS  Google Scholar 

  • Kozawa O et al (2001) Mechanism of prostaglandin D(2)-stimulated heat shock protein 27 induction in osteoblasts. Cell Signal 13(8):535–541

    Article  PubMed  CAS  Google Scholar 

  • Nagata K (1998) Expression and function of heat shock protein 47: a collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol 16(7):379–386

    Article  PubMed  CAS  Google Scholar 

  • Dafforn TR, Della M, Miller AD (2001) The molecular interactions of heat shock protein 47 (Hsp47) and their implications for collagen biosynthesis. J Biol Chem 276(52):49310–49319

    Article  PubMed  CAS  Google Scholar 

  • Yamamura I et al (1998) Transcriptional activation of the mouse HSP47 gene in mouse osteoblast MC3T3-E1 cells by TGF-beta 1. Biochem Biophys Res Commun 244(1):68–74

    Article  PubMed  CAS  Google Scholar 

  • Tiffee JC, Griffin JP, Cooper LF (2000) Immunolocalization of stress proteins and extracellular matrix proteins in the rat tibia. Tissue Cell 32(2):141–147

    Article  PubMed  CAS  Google Scholar 

  • Garrido C et al (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5(22):2592–2601

    Article  PubMed  CAS  Google Scholar 

  • Terauchi R et al (2003) Hsp70 prevents nitric oxide-induced apoptosis in articular chondrocytes. Arthritis Rheum 48(6):1562–1568

    Article  PubMed  CAS  Google Scholar 

  • Dressel R et al (2000) Heat shock protein 70 is able to prevent heat shock-induced resistance of target cells to CTL. J Immunol 164(5):2362–2371

    PubMed  CAS  Google Scholar 

  • Klein-Nulend J et al (1997) Mechanical stimulation of osteopontin mRNA expression and synthesis in bone cell cultures. J Cell Physiol 170(2):174–181

    Article  PubMed  CAS  Google Scholar 

  • Shea LD et al (2000) Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng 6(6):605–617

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Lin Z, Li YM (2006) Effects of different magnitudes of mechanical strain on osteoblasts in vitro. Biochem Biophys Res Commun 344(1):122–128

    Article  PubMed  CAS  Google Scholar 

  • Mizutani A et al (2001) Expression of matrix metalloproteinases during ascorbate-induced differentiation of osteoblastic MC3T3-E1 cells. J Bone Miner Res 16(11):2043–2049

    Article  PubMed  CAS  Google Scholar 

  • Santos MI, Reis RL (2009) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10(1):12–27

    Article  Google Scholar 

  • Aubin JE, Bonnelye E (2000) Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Osteoporos Int 11(11):905–913

    Article  PubMed  CAS  Google Scholar 

  • Kaneshita Y, Goda S, Kawamoto T (2007) The effect of matrix metalloproteinase-9 on the differentiation into osteoclast cells on RAW264 cells. Orthodontic Waves 66(4):122–128

    Article  Google Scholar 

  • Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289(5484):1508–1514

    Article  PubMed  CAS  Google Scholar 

  • Rylander MN et al (2010) Measurement and mathematical modeling of thermally induced injury and heat shock protein expression kinetics in normal and cancerous prostate cells. Int J Hyperthermia 26(8):748–764

    Article  PubMed  CAS  Google Scholar 

  • Chung CY et al (1999) Serial passage of MC3T3-E1 cells alters osteoblastic function and responsiveness to transforming growth factor-beta1 and bone morphogenetic protein-2. Biochem Biophys Res Commun 265(1):246–251

    Article  PubMed  CAS  Google Scholar 

  • Lee YW et al (2004) Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol Med 10(1–6):19–27

    PubMed  CAS  Google Scholar 

  • Russotti G et al (1996) Induction of tolerance to hypothermia by previous heat shock using human fibroblasts in culture. Cryobiology 33(5):567–580

    Article  PubMed  CAS  Google Scholar 

  • Luna C et al (2009) Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells. Mol Vis 15:534–544

    PubMed  CAS  Google Scholar 

  • Kaarniranta K et al (2003) Stress responses of mammalian cells to high hydrostatic pressure. Biorheology 40(1–3):87–92

    PubMed  CAS  Google Scholar 

  • Sawatzky DA et al (2005) Heat-shock proteins and their role in chondrocyte protection, an application for autologous transplantation. Inflammopharmacology 12(5–6):569–589

    Article  PubMed  CAS  Google Scholar 

  • Cao Y et al (1999) TGF-beta1 mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts. Pflugers Arch 438(3):239–244

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K et al (2008) (−)-Epigallocatechin gallate reduces transforming growth factor beta-stimulated HSP27 induction through the suppression of stress-activated protein kinase/c-Jun N-terminal kinase in osteoblasts. Life Sci 82(19–20):1012–1017

    Article  PubMed  CAS  Google Scholar 

  • Matsuo K (2009) Cross-talk among bone cells. Curr Opin Nephrol Hypertens 18(4):292–297

    Article  PubMed  CAS  Google Scholar 

  • Grellier M, Bordenave L, Amedee J (2009) Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol 27(10):562–571

    Article  PubMed  CAS  Google Scholar 

  • Einhorn TA (2003) Cox-2: where are we in 2003?—The role of cyclooxygenase-2 in bone repair. Arthritis Res Ther 5(1):5–7

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe RJ et al (2006) COX-2 has a critical role during incorporation of structural bone allografts. Skeletal Development and Remodeling in Health, Disease, and Aging 1068:532–542

    Google Scholar 

  • Sato MM et al (2009) Bone morphogenetic protein-2 enhances Wnt/beta-catenin signaling-induced osteoprotegerin expression. Genes Cells 14(2):141–153

    Article  PubMed  CAS  Google Scholar 

  • Takai H et al (1998) Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem 273(42):27091–27096

    Article  PubMed  CAS  Google Scholar 

  • Grundt A et al (2009) Direct effects of osteoprotegerin on human bone cell metabolism. Biochem Biophys Res Commun 389:550–555

    Article  PubMed  CAS  Google Scholar 

  • Hurley NE et al (2010) Modulating the functional contributions of c-Myc to the human endothelial cell cyclic strain response. J Vasc Res 47(1):80–90

    Article  PubMed  CAS  Google Scholar 

  • Deckers MM et al (2002) Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143(4):1545–1553

    Article  PubMed  CAS  Google Scholar 

  • Gong B et al (2006) Whole-body hyperthermia induces up-regulation of vascular endothelial growth factor accompanied by neovascularization in cardiac tissue. Life Sci 79(19):1781–1788

    Article  PubMed  CAS  Google Scholar 

Download references

Funding sources

The following are the funding sources of this work: National Science Foundation grant CBET 0966546 and Institute for Critical Technologies and Applied Sciences (ICTAS) at Virginia Tech.

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marissa Nichole Rylander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, E., Rylander, M.N. Response of preosteoblasts to thermal stress conditioning and osteoinductive growth factors. Cell Stress and Chaperones 17, 203–214 (2012). https://doi.org/10.1007/s12192-011-0300-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0300-8

Keywords

Navigation