Skip to main content
Log in

Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

It has been previously reported that pretreatment with exogenous heat shock protein 70 (Hsp70) is able to protect cells and animals from the deleterious effects of bacterial lipopolysaccharide (LPS) produced by Gram-negative bacteria. However, the effects of Hsp70 pretreatment on lipoteichoic acid (LTA) challenge resulted from Gram-positive bacteria infection have not been fully elucidated. In this study, we demonstrated that preconditioning with human recombinant Hsp70 ameliorates various manifestations of systematic inflammation, including reactive oxygen species, TNFα, and CD11b/CD18 adhesion receptor expression induction observed in different myeloid cells after LTA addition. Therefore, exogenous Hsp70 may provide a mechanism for controlling excessive inflammatory responses after macrophage activation. Furthermore, in a rat model of LTA-induced sepsis, we demonstrated that prophylactic administration of exogenous human Hsp70 significantly exacerbated numerous homeostatic and hemodynamic disturbances induced by LTA challenge and partially normalized the coagulation system and multiple biochemical blood parameters, including albumin and bilirubin concentrations, which were severely disturbed after LTA injections. Importantly, prophylactic intravenous injection of Hsp70 before LTA challenge significantly reduced mortality rates. Thus, exogenous mammalian Hsp70 may serve as a powerful cellular defense agent against the deleterious effects of bacterial pathogens, such as LTA and LPS. Taken together, our findings reveal novel functions of this protein and establish exogenous Hsp70 as a promising pharmacological agent for the prophylactic treatment of various types of sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida MC, Silva AC, Barral A, Barral Netto M (2000) A simple method for human peripheral blood monocyte isolation. Mem Inst Oswaldo Cruz 95:221–223

    Article  PubMed  Google Scholar 

  • Antal-Szalmas P (2000) Evaluation of Cd14 in host defence. Eur J Clin Invest 30:167–179

    Article  PubMed  CAS  Google Scholar 

  • Baue AE (1991) Nutrition and metabolism in sepsis and multisystem organ failure. Surg Clin North Am 71:549–565

    PubMed  CAS  Google Scholar 

  • Bone R (1991) The pathogenesis of sepsis. Ann Int Med 115:457–469

    PubMed  CAS  Google Scholar 

  • Boyum A (1968) Separation of leukocytes from blood and bone narrow. J Lab Invest 22:77–85

    Google Scholar 

  • Carbonell N, Blasco M, Ferreres J, Blanquer J, García-Ramón R, Mesejo A, Miguel A (2004) Sepsis and SOFA score: related outcome for critically ill renal patients. Clin Nephrol 62:185–192

    PubMed  CAS  Google Scholar 

  • Carratelli CR, Nuzzo I, Bentivoglio C, Galdiero M (1996) CD11a/CD18 and CD11b/18 modulation by lipoteichoic acid, N-acetyl-muramyl-alpha-alanyl-D-isoglutamine, muramic acid and protein A from Staphylococcus aureus. FEMS Immunol Med Microbiol 16:309–315

    PubMed  CAS  Google Scholar 

  • De Kimpe SJ, Thiemermann C, Vane JR (1995) Role for untracellular platelet-activating factor in the circulatory failure in a model of gram-positive shock. Br J Pharmacol 116:3191–3198

    PubMed  Google Scholar 

  • Detmers PA, Zhou D, Polizzi E, Thieringer R, Hanlon WA, Vaidya S, Bansal V (1998) Potential role of membrane internalization and vesicle fusion in adhesion of neutrophils in response to lipopolysaccharide and TNF. J Immunol 161:1921–1929

    PubMed  CAS  Google Scholar 

  • Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, Hoover DL (2001) Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 16:210–219

    Article  PubMed  CAS  Google Scholar 

  • Fischer W, Mannsfeld T, Hagen G (1990) On the basic structure of poly(glycerophosphate) lipoteichoic acids. Biochem Cell Biol 68:33–43

    Article  PubMed  CAS  Google Scholar 

  • Friedman G, Silva E, Vincent JL (1998) Has the mortality of septic shock changed with time. Crit Care Med 26:2078–2086

    Article  PubMed  CAS  Google Scholar 

  • Hawker F (1991) Liver dysfunction in critical illness. Anaesth Intensive Care 19:165–181

    PubMed  CAS  Google Scholar 

  • Helling H, Schenk HJ, Pindur G, Weinrich M, Wagner B, Stephan B (2010) Fibrinolytic and procoagulant activity in septic and haemorrhagic shock. Clin Hemorheol Microcirc 45:295–300

    PubMed  CAS  Google Scholar 

  • Henderson B (2010) Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochem Funct 28:1–14

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa H, Oda S, Nakamura M (2009) Blood glucose control in patients with severe sepsis and septic shock. World J Gastroenterol 15:4132–4136

    Article  PubMed  CAS  Google Scholar 

  • Geerdes HF, Ziegler D, Lode H, Hund M, Loehr A, Fangmann W, Wagner J (1992) Septicemia in 980 patients at a university hospital in Berlin: prospective studies during 4 selected years between 1979 and 1989. Clin Infect Dis 15:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Gogos CA, Drosou E, Bassaris HP, Skoutelis A (2000) Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis 181:176–180

    Article  PubMed  CAS  Google Scholar 

  • Gong MN, Thompson BT, Williams P, Pothier L, Boyce PD, Christiani DC (2005) Clinical predictors of and mortality in acute respiratory distress syndrome: potential role of red cell transfusion. Crit Care Med 33:1191–1198

    Article  PubMed  Google Scholar 

  • Gustot T (2011) Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care 17:153–159

    Article  PubMed  Google Scholar 

  • Guzhova IV, Arnholdt AC, Darieva ZA, Kinev AV, Lasunskaya EB, Nilsson K, Bozhkov VM, Voronin AP, Margulis BA (1998) Effects of exogenous stress protein 70 on the functional properties of human promonocytes through binding to cell surface and internalization. Cell Stress Chaperones 3:67–77

    Article  PubMed  CAS  Google Scholar 

  • Johnson JD, Fleshner M (2006) Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J Leukoc Biol 79:425–434

    Article  PubMed  CAS  Google Scholar 

  • Kao SJ, Lei HC, Kuo CT, Chang MS, Chen BC, Chang YC, Chiu WT, Lin CH (2005) Lipoteichoic acid induces nuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology 115:366–374

    Article  PubMed  CAS  Google Scholar 

  • Kengatharan K, De Kimpe S, Robson C, Foster S, Thiemermann C (1998) Mechanism of gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. J Exp Med 188:305–315

    Article  PubMed  CAS  Google Scholar 

  • Kustanova GA, Murashev AN, Karpov VL, Margulis BA, Guzhova IV, Prokhorenko IR, Grachev SV, Evgen’ev MB (2006) Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress Chaperones 11:276–286

    Article  PubMed  CAS  Google Scholar 

  • Lappin E, Ferguson AJ (2009) Gram-positive toxic shock syndromes. Lancet Infect Dis 9:281–290

    Article  PubMed  CAS  Google Scholar 

  • Leaver A, Burke-Gaffney A, Evans TW (2008) Gram-positive and gram-negative sepsis: two disease Entities? In J.-L. Vincent (Ed.) Yearbook of intensive care and emergency medicine (volume 2008). doi:10.1007/978-3-540-77290-3

  • Leon CG, Tory R, Jia J, Sivak O, Wasan KM (2008) Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharmaceutical Res 25:1751–1761

    Article  CAS  Google Scholar 

  • Lotz S, Aga E, Wilde I, van Zandbergen G, Hartung T, Solbach W, Laskay T (2004) Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2. J Leuk Biol 75:467–477

    Article  CAS  Google Scholar 

  • McCabe WR, Treadwell TL, De Maria A Jr (1983) Pathophysiology of bacteremia. Am J Med 75(1B):7–18

    Article  PubMed  CAS  Google Scholar 

  • MacCallum NS, Evans TW (2005) Epidemiology of acute lung injury. Curr Opin Crit Care 11:43–49

    Article  PubMed  Google Scholar 

  • Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554

    Article  PubMed  Google Scholar 

  • Merkulov VA, Plekhanova TM, Zverev A, Karpov VL, Evgen'ev MB, Kadykova ON, Gordeev EV, Petrov AA, Kovtun AL, Makhlaĭ AA, Mironov AN (2011) Production of 70 kDa recombinant human heat shock protein in baculovirus expression system and assessment of its antiviral activity. Zh Mikrobiol Epidemiol Immunobiol 1:54–60

    PubMed  Google Scholar 

  • Nakada J, Matsura T, Okazaki N, Nishida T, Togawa A, Minami Y, Inagaki Y, Ito H, Yamada K, Ishibe Y (2005) Oral administration of geranylgeranylacetone improves survival rate in a rat endotoxin shock model: administration timing and heat shock protein 70 induction. Shock 24:482–487

    Article  PubMed  CAS  Google Scholar 

  • Nelson RJ, Ziegelhoffer T, Nicolet C, Werner-Washburne M, Craig EA (1992) The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71:97–105

    Article  PubMed  CAS  Google Scholar 

  • Nilsen NJ, Deininger S, Nonstad U, Skjeldal F, Husebye H, Rodionov D, von Aulock S, Hartung T, Lien E, Bakke O, Espevik T (2008) Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling: role of CD14 and CD36. J Leukoc Biol 84:280–291

    Article  PubMed  CAS  Google Scholar 

  • O’Neill LA (2003) Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Curr Opin Pharmacol 3:396–403

    Article  PubMed  Google Scholar 

  • Pfister H, Hennet T, Jungi TW (1992) Lipopolysaccharide synergizes with tumour necrosis factor-alpha in cytotoxicity assays. Immunology 77:473–476

    PubMed  CAS  Google Scholar 

  • Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E (1993) Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 103:565–575

    Article  PubMed  CAS  Google Scholar 

  • Power C, Fanning N, Redmond HP (2002) Cellular apoptosis and organ injury in sepsis: a review. Shock 18:197–211

    Article  PubMed  Google Scholar 

  • Rozhkova E, Yurinskaya M, Zatsepina O, Garbuz D, Karpov V, Surkov S, Murashev A, Ostrov V, Margulis B, Evgen’ev M, Vinokurov M (2010) Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann N Y Acad Sci 1197:94–107

    Article  PubMed  CAS  Google Scholar 

  • Rozhkova EA, Zatsepina OG, Iurinskaia MM, Vinokurov MG, Evgen'ev MB (2011) The effect of extracellular recombinant human heat shock protein 70 (Hsp70) on protein pattern observed after endotoxin-induced macrophage activation. Mol Biol (Mosk) 45:386–390

    Article  CAS  Google Scholar 

  • Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG (2011) The pathogenesis of sepsis. Annu Rev Pathol 6:19–48

    Article  PubMed  CAS  Google Scholar 

  • Suganuma T, Irie K, Fujii E, Yoshioka T, Muraki T (2002) Effect of heat stress on lipopolysaccharide-induced vascular permeability change in mice. J Pharmacol Exp Ther 303:656–663

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933–940

    Article  PubMed  CAS  Google Scholar 

  • Tsan MF, Gao B (2004) Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286:C739–C744

    Article  PubMed  CAS  Google Scholar 

  • Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85:905–910

    Article  PubMed  CAS  Google Scholar 

  • Victor VM, Rocha M, Esplugues JV, De la Fuente M (2005) Role of free radicals in sepsis: antioxidant therapy. Curr Pharm Des 11:3141–3158

    Article  PubMed  CAS  Google Scholar 

  • Vincent J-L (2008) Yearbook of intensive care and emergency medicine (volume 2008). doi:10.1007/978-3-540-77290-3.

  • Vinokurov MG, Yurinskaya MM, Suslikov AV, Pechatnikov VA, Grachev SV (2006) Dynamics of the Fas- and stress-induced apoptosis of human neutrophils under the action of endotoxins. Dokl Biol Sci 410:355–357

    Article  PubMed  CAS  Google Scholar 

  • Wang JE, Dahle MK, McDonald M, Foster SJ, Aasen AO, Thiemermann C (2003) Peptidoglycan and lipoteichoic acid in gram-positive bacterial sepsis: receptors, signal transduction, biological effects, and synergism. Shock 20:402–414

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Wang WY, Liao JF, Chen CF, Hou YC, Liou KT, Chou YC, Tien JH, Shen YC (2004) Prevention of macrophage adhesion molecule-1 (Mac-1)-dependent neutrophil firm adhesion by taxifolin through impairment of protein kinase-dependent NADPH oxidase activation and antagonism of G protein-mediated calcium influx. Biochem Pharmacol 67:2251–2262

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DS, Dunsmore KE, Denenberg AG, Muething L, Poynter SE, Wong HR (2011) Biological activity of truncated C-terminus human heat shock protein 72. Immunol Lett 135:173–179

    Article  PubMed  CAS  Google Scholar 

  • Young JC (2010) Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol 88:291–300

    Article  PubMed  CAS  Google Scholar 

  • Yurinskaya MM, Vinokurov MG, Zatcepina OG, Garbuz D, Guzhova IV, Rozhkova EA, Suslikov AV, Karpov VL, Evgen’ev MB (2009) Exogenous heat shock proteins (HSP70) significantly inhibit endotoxin-induced activation of human neutrophils. Dokl Biol Sci 426:298–301

    Article  PubMed  CAS  Google Scholar 

  • Zanotti-Cavazzoni SL, Goldfarb RD (2009) Animal models of sepsis. Crit Care Clin 25:703–719

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Nagaraja G, Kaur P, Asea E, Asea A (2010) Chaperokine function of recombinant Hsp72 produced in insect cells using baculovirus expression system is retained. J Biol Chem 285:349–356

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, An H, Xu H, Liu S, Cao X (2005) Heat shock up-regulates expression of Toll-like receptor-2 and Toll-like receptor-4 in human monocytes via p38 kinase signal pathway. Immunology 114:522–530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work was supported by the Russian Foundation for Basic Research, project 09-04-00643 and 09-04-00660, project from “Genofond dynamics” program, Grant of the Program of Molecular and Cellular Biology RAN to M.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Evgen’ev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinokurov, M., Ostrov, V., Yurinskaya, M. et al. Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels. Cell Stress and Chaperones 17, 89–101 (2012). https://doi.org/10.1007/s12192-011-0288-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-011-0288-0

Keywords

Navigation