Skip to main content
Log in

The multifaceted nature of αB-crystallin

  • PERSPECTIVES ON sHSPs
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

In vivo, small heat-shock proteins (sHsps) are key players in maintaining a healthy proteome. αB-crystallin (αB-c) or HspB5 is one of the most widespread and populous of the ten human sHsps. Intracellularly, αB-c acts via its molecular chaperone action as the first line of defence in preventing target protein unfolding and aggregation under conditions of cellular stress. In this review, we explore how the structure of αB-c confers its function and interactions within its oligomeric self, with other sHsps, and with aggregation-prone target proteins. Firstly, the interaction between the two highly conserved regions of αB-c, the central α-crystallin domain and the C-terminal IXI motif and how this regulates αB-c chaperone activity are explored. Secondly, subunit exchange is rationalised as an integral structural and functional feature of αB-c. Thirdly, it is argued that monomeric αB-c may be its most chaperone-species active, but at the cost of increased hydrophobicity and instability. Fourthly, the reasons why hetero-oligomerisation of αB-c with other sHsps is important in regulating cellular proteostasis are examined. Finally, the interaction of αB-c with aggregation-prone, partially folded target proteins is discussed. Overall, this paper highlights the remarkably diverse capabilities of αB-c as a caretaker of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

αA-c:

αA-crystallin

αB-c:

αB-crystallin

ACD:

α-Crystallin domain

Aβ:

Amyloid beta

DLS:

Dynamic light scattering

FRET:

Förster resonance energy transfer

HMW:

High-molecular weight

IXI:

IXI motif

K d :

Dissociation constant

MS:

Mass spectrometry

PDB:

Protein Data Bank

RCM:

Reduced and carboxymethylated

R g :

Radius of gyration

R h :

Hydrodynamic radius

SANS:

Small-angle nuclear scattering

SAXS:

Small-angle X-ray scattering

sHsp:

Small heat-shock protein

UPP:

Ubiquitin-proteasome pathway

WT:

Wild type

γS-c:

γS-crystallin

References

  • Abraham EC, Huaqian J, Aziz A, Kumarasamy A, Datta P (2008) Role of the specifically targeted lysine residues in the glycation dependent loss of chaperone activity of αA- and αB-crystallins. Mol Cell Biochem 310:235–239

    CAS  PubMed  Google Scholar 

  • Ahmad MF, Raman B, Ramakrishna T, Rao CM (2008) Effect of phosphorylation on αB-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of αB-crystallin and its phosphorylation-mimicking mutant. J Mol Biol 375:1040–1051

    CAS  PubMed  Google Scholar 

  • Alderson TR et al (2019) Local unfolding of the HSP27 monomer regulates chaperone activity. Nat Commun 10:1068

    PubMed  PubMed Central  Google Scholar 

  • Andley UP (2007) Crystallins in the eye: function and pathology. Prog Retin Eye Res 26:78–98

    CAS  PubMed  Google Scholar 

  • Andley UP, Hamilton PD, Ravi N, Weihl CC (2011) A knock-in mouse model for the R120G mutation of αB-crystallin recapitulates human hereditary myopathy and cataracts. PLoS One 6:e17671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Annertz K, Enoksson J, Williams R, Jacobsson H, Coman WB, Wennerberg J (2014) Alpha B-crystallin – a validated prognostic factor for poor prognosis in squamous cell carcinoma of the oral cavity. Acta Otolaryngol 134:543–550

    CAS  PubMed  Google Scholar 

  • Aquilina JA, Benesch JLP, Bateman OA, Slingsby C, Robinson CV (2003) Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alphaB-crystallin. Proc Natl Acad Sci 100:10611–10616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Augusteyn RC (2004) Dissociation is not required for α-crystallin’s chaperone function. Exp Eye Res 79:781–784

    CAS  PubMed  Google Scholar 

  • Bagnéris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of α-crystallin domain dimers of αB-crystallin and Hsp20. J Mol Biol 392:1242–1252

    PubMed  Google Scholar 

  • Benesch JLP et al (2010) The quaternary organization and dynamics of the molecular chaperone HSP26 are thermally regulated. Chem Biol 17:1008–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergemalm D, Forsberg K, Srivastava V, Graffmo KS, Andersen PM, Brännström T, Wingsle G, Marklund SL (2010) Superoxide dismutase-1 and other proteins in inclusions from transgenic amyotrophic lateral sclerosis model mice. J Neurochem 114:408–418

    CAS  PubMed  Google Scholar 

  • Berry V, Francis P, Reddy MA, Collyer D, Vithana E, MacKay I, Dawson G, Carey AH, Moore A, Bhattacharya SS, Quinlan RA (2001) Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans. Am J Hum Genet 69:1141–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binger KJ, Ecroyd H, Yang S, Carver JA, Howlett GJ, Griffin MD (2013) Avoiding the oligomeric state: αB-crystallin inhibits fragmentation and induces dissociation of apolipoprotein C-II amyloid fibrils. FASEB J 27:1214–1222

    CAS  PubMed  Google Scholar 

  • Bova MP, Ding LL, Horwitz J, Fung BK (1997) Subunit exchange of alphaA-crystallin. J Biol Chem 272:29511–29517

    CAS  PubMed  Google Scholar 

  • Brady JP, Garland D, Duglas-Tabor Y, Robison WG Jr, Groome A, Wawrousek EF (1997) Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc Natl Acad Sci U S A 94:884–889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brady JP, Garland DL, Green DE, Tamm ER, Giblin FJ, Wawrousek EF (2001) AlphaB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest Ophthalmol Vis Sci 42:2924–2934

    CAS  PubMed  Google Scholar 

  • Braun N et al (2011) Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach. Proc Natl Acad Sci USA 108:20491–20496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bsibsi M et al (2014) Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol 128:215–229

    CAS  PubMed  Google Scholar 

  • Carver JA, Lindner RA, Lyon C, Canet D, Hernandez H, Dobson CM, Redfield C (2002) The interaction of the molecular chaperone α-crystallin with unfolding α-lactalbumin: a structural and kinetic spectroscopic study. J Mol Biol 318:815–827

    CAS  PubMed  Google Scholar 

  • Carver JA, Grosas AB, Ecroyd H, Quinlan RA (2017) The functional roles of the unstructured N- and C-terminal regions in αB-crystallin and other mammalian small heat-shock proteins. Cell Stress Chaperones 22:627–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carver JA, Ecroyd H, Truscott RJW, Thorn DC, Holt C (2018) Proteostasis and the regulation of intra- and extracellular protein aggregation by ATP-independent molecular chaperones: lens α-crystallins and milk caseins. Acc Chem Res 51:745–752

    CAS  PubMed  Google Scholar 

  • Chavez Zobel AT et al (2003) Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy-causing R120G αB-crystallin mutant. Hum Mol Genet 12:1609–1620

    CAS  PubMed  Google Scholar 

  • Chen W, Lu Q, Lu L, Guan H (2017) Increased levels of alphaB-crystallin in vitreous fluid of patients with proliferative diabetic retinopathy and correlation with vascular endothelial growth factor. Clin Exp Ophthalmol 45:379–384

    PubMed  Google Scholar 

  • Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:27–68

    CAS  PubMed  Google Scholar 

  • Clark AR, Naylor CE, Bagnéris C, Keep NH, Slingsby C (2011) Crystal structure of R120G disease mutant of human αB-crystallin domain dimer shows closure of a groove. J Mol Biol 408:118–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox D, Carver JA, Ecroyd H (2014) Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins. Biochim. Biophys Acta - Mol Basis Dis 1842:1830–1843

    CAS  Google Scholar 

  • Cox D, Selig E, Griffin MDW, Carver JA, Ecroyd H (2016) Small heat-shock proteins prevent α-synuclein aggregation via transient interactions and their efficacy is affected by the rate of aggregation. J Biol Chem 291:22618–22629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dehle FC, Ecroyd H, Musgrave IF, Carver JA (2010) αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by κ-casein and the amyloid-β peptide. Cell Stress Chaperones 15:1013–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delaye M, Tardieu A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302:415–417

    CAS  PubMed  Google Scholar 

  • Delbecq SP, Klevitt RE (2019) HSPB5 engages multiple states of a destabilized client to enhance chaperone activity in a stress dependent manner. J Biol Chem 294:3261–3270

  • Delbecq SP, Jehle S, Klevit R (2012) Binding determinants of the small heat shock protein, αB-crystallin: recognition of the ‘IxI’ motif. EMBO J 31:4587–4594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delbecq SP, Rosenbaum JC, Klevit RE (2015) A mechanism of subunit recruitment in human small heat shock protein oligomers. Biochemistry 54:4276–4284

    CAS  PubMed  Google Scholar 

  • Ecroyd H, Meehan S, Horwitz J, Aquilina JA, Benesch JL, Robinson CV, Macphee CE, Carver JA (2007) Mimicking phosphorylation of αB-crystallin affects its chaperone activity. Biochem J 401:129–141

    CAS  PubMed  Google Scholar 

  • Ecroyd H, Koudelka T, Thorn DC, Williams DM, Devlin G, Hoffmann P, Carver JA (2008) Dissociation from the oligomeric state is the rate-limiting step in fibril formation by κ-casein. J Biol Chem 283:9012–9022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ecroyd H, Thorn DC, Liu Y, Carver JA (2010) The dissociated form of κ-casein is the precursor to its amyloid fibril formation. Biochem J 429:251–260

    CAS  PubMed  Google Scholar 

  • Esposito G, Garvey M, Alverdi V, Pettirossi F, Corazza A, Fogolari F, Polano M, Mangione PP, Giorgetti S, Stoppini M, Rekas A, Bellotti V, Heck AJ, Carver JA (2013) Monitoring the interaction between β2-microglobulin and the molecular chaperone αB-crystallin by NMR and mass spectrometry: αB-crystallin dissociates β2-microglobulin oligomers. J Biol Chem 288:17844–17858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freilich R et al (2018) Competing protein-protein interactions regulate binding of Hsp27 to its client protein tau. Nat Commun 9:4563

    PubMed  PubMed Central  Google Scholar 

  • Fu L, Liang JJ-N (2003) Enhanced stability of alpha B-crystallin in the presence of small heat shock protein Hsp27. Biochem Biophys Res Commun 302:710–714

    CAS  PubMed  Google Scholar 

  • Garvey M, Griesser SS, Griesser HJ, Thierry B, Nussio MR, Shapter JG, Ecroyd H, Giorgetti S, Bellotti V, Gerrard JA, Carver JA (2011) Enhanced molecular chaperone activity of the small heat-shock protein αB-crystallin following covalent immobilization onto a solid-phase support. Biopolymers 95:376–389

    CAS  PubMed  Google Scholar 

  • Garvey M et al (2017) Functional amyloid protection in the eye lens: retention of α-crystallin molecular chaperone activity after modification into amyloid fibrils. Biomolecules 7:67

    PubMed Central  Google Scholar 

  • Ghosh JG, Houck SA, Clark JI (2008) Interactive sequences in the molecular chaperone, human αB crystallin modulate the fibrillation of amyloidogenic proteins. Int J Biochem Cell Biol 40:954–967

    CAS  PubMed  Google Scholar 

  • Hains PG, Truscott RJW (2010) Age-dependent deamidation of lifelong proteins in the human lens. Investig Opthalmol Vis Sci 51:3107

    Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatters DM, Lindner RA, Carver JA, Howlett GJ (2001) The molecular chaperone, α-crystallin, inhibits amyloid formation by apolipoprotein C-II. J Biol Chem 276:33755–33761

    CAS  PubMed  Google Scholar 

  • Heaven MR et al (2016) Composition of Rosenthal fibers, the protein aggregate hallmark of Alexander disease. J Proteome Res 15:2265–2282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hipp MS, Kasturi P, Ulrich Hartl F (2019) The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20:421–435. https://doi.org/10.1038/s41580-019-0101-y

    Article  CAS  PubMed  Google Scholar 

  • Hochberg GKA et al (2014) The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity. Proc Natl Acad Sci 111:E1562–E1570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussein RM, Benjamin IJ, Kampinga HH (2015) Rescue of αB crystallin (HSPB5) mutants associated protein aggregation by co-expression of HSPB5 partners. PLoS One 10:e0126761

    PubMed  PubMed Central  Google Scholar 

  • Inagaki N, Hayashi T, Arimura T, Koga Y, Takahashi M, Shibata H, Teraoka K, Chikamori T, Yamashina A, Kimura A (2006) αB-Crystallin mutation in dilated cardiomyopathy. Biochem Biophys Res Commun 342:379–386

    CAS  PubMed  Google Scholar 

  • Inoue R et al (2016) New insight into the dynamical system of αB-crystallin oligomers. Sci Rep 6:29208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwaki T, Kume-Iwaki A, Liem RK, Goldman JE (1989) Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell 57:71–78

    CAS  PubMed  Google Scholar 

  • Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48:491–498

    CAS  PubMed  Google Scholar 

  • Jehle S, van Rossum B, Stout JR, Noguchi SM, Falber K, Rehbein K, Oschkinat H, Klevit RE, Rajagopal P (2009) αB-Crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. J Mol Biol 385:1481–1497

    CAS  PubMed  Google Scholar 

  • Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kühne R, Stout JR, Higman VA, Klevit RE, van Rossum B, Oschkinat H (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers. Nat Struct Mol Biol 17:1037–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jehle S et al (2011) N-terminal domain of alphaB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proc Natl Acad Sci U S A 108:6409–6414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato K, Goto S, Inaguma Y, Hasegawa K, Morishita R, Asano T (1994) Purification and characterization of a 20-kDa protein that is highly homologous to alpha B crystallin. J Biol Chem 269:15302–15309

    CAS  PubMed  Google Scholar 

  • Katos K et al (1992) Copurification of small heat shock protein with αB-crystallin from human skeletal muscle. J Biol Chem 267:7718-7725

  • Kim M-S, Lee HW, Jun S-Y, Lee EH (2015a) Expression of alpha B crystallin and BCL2 in patients with infiltrating ductal carcinoma. Int J Clin Exp Pathol 8:8842–8856

    PubMed  PubMed Central  Google Scholar 

  • Kim M-S, Lee HW, Lee EH (2015b) Renal tumor with alpha B crystallin expression. Int J Clin Exp Pathol 8:9383–9389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsley CN, Brubaker WD, Markovic S, Diehl A, Brindley AJ, Oschkinat H, Martin RW (2013) Preferential and specific binding of human αB-crystallin to a cataract-related variant of γS-crystallin. Structure 21:2221–2227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J 24:3633–3642

    CAS  PubMed  Google Scholar 

  • Kulig M, Ecroyd H (2012) The small heat-shock protein αB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin. Biochem J 448:343–352

    CAS  PubMed  Google Scholar 

  • Laganowsky A, Benesch JL, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Wang Y, Lai Y, Xu P, Yang Z (2017) HspB5 correlates with poor prognosis in colorectal cancer and prompts epithelial-mesenchymal transition through ERK signaling. PLoS One 12:e0182588

    PubMed  PubMed Central  Google Scholar 

  • Li B et al (2018) Cryo-EM of fulllength α-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun 9:3609.

  • Lindner RA, Kapur A, Carver JA (1997) The interaction of the molecular chaperone, alpha-crystallin, with molten globule states of bovine alpha-lactalbumin. J Biol Chem 272:27722–27729

    CAS  PubMed  Google Scholar 

  • Linse S (2017) Monomer-dependent secondary nucleation in amyloid formation. Biophys Rev 9:329–338

  • Liu Y, Zhou Q, Tang M, Fu N, Shao W, Zhang S, Yin Y, Zeng R, Wang X, Hu G, Zhou J (2015) Upregulation of alphaB-crystallin expression in the substantia nigra of patients with Parkinson’s disease. Neurobiol Aging 36:1686–1691

    CAS  PubMed  Google Scholar 

  • Liu Z, Wang C, Li Y, Zhao C, Li T, Li D, Zhang S, Liu C (2018) Mechanistic insights into the switch of αB-crystallin chaperone activity and self-multimerization. J Biol Chem 293:14880–14890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Piszczek G, Wingfield PT, Sergeev YV, Hejtmancik JF (2009) The G18V CRYGS mutation associated with human cataracts increases gammaS-crystallin sensitivity to thermal and chemical stress. Biochemistry 48:7334–7341

    CAS  PubMed  Google Scholar 

  • Magalhães J, Santos SD, Saraiva MJ (2010) αB-crystallin (HspB5) in familial amyloidotic polyneuropathy. Int J Exp Pathol 91:515–521

    PubMed  PubMed Central  Google Scholar 

  • Mainz A, Peschek J, Stavropoulou M, Back KC, Bardiaux B, Asami S, Prade E, Peters C, Weinkauf S, Buchner J, Reif B (2015) The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nat Struct Mol Biol 22:898–905

    CAS  PubMed  Google Scholar 

  • Meehan S, Berry Y, Luisi B, Dobson CM, Carver JA, MacPhee C (2004) Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. J Biol Chem 279:3413–3419

    CAS  PubMed  Google Scholar 

  • Mineva I, Gartner W, Hauser P, Kainz A, Löffler M, Wolf G, Oberbauer R, Weissel M, Wagner L (2005) Differential expression of alphaB-crystallin and Hsp27-1 in anaplastic thyroid carcinomas because of tumor-specific alphaB-crystallin gene (CRYAB) silencing. Cell Stress Chaperones 10:171–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moberg C, Bourlev V, Ilyasova N, Olovsson M (2015) Levels of oestrogen receptor, progesterone receptor and αB-crystallin in eutopic endometrium in relation to pregnancy in women with endometriosis. Hum Fertil 18:30–37

    CAS  Google Scholar 

  • Mymrikov EV, Daake M, Richter B, Haslbeck M, Buchner J (2017) The chaperone activity and substrate spectrum of human small heat shock proteins. J Biol Chem 292:672–684

    CAS  PubMed  Google Scholar 

  • Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O'Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M (2019) The BioGRID interaction database: 2019 update. Nucleic Acids Res 47:D529–D541

    CAS  PubMed  Google Scholar 

  • Outeiro TF et al (2006) Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem Biophys Res Commun 351

  • Pasta SY, Raman B, Ramakrishna T, Rao CM (2004) The IXI/V motif in the C-terminal extensions of alpha-crystallins: alternative interactions and oligomeric assemblies. Mol Vis 10:655–662

    CAS  PubMed  Google Scholar 

  • Peschek J et al (2013) Regulated structural transitions unleash the chaperone activity of alphaB-crystallin. Proc Natl Acad Sci 110

  • Pountney DL et al (2005) Alpha B-crystallin is a major component of glial cytoplasmic inclusions in multiple system atrophy. Neurotox Res 7:77–85

    CAS  PubMed  Google Scholar 

  • Rajagopal P et al (2015) A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis. Elife 4:e07304. https://doi.org/10.7554/eLife.07304.001

  • Raju I, Oonthonpan L, Abraham EC (2012) Mutations in human αA-crystallin/sHSP affect subunit exchange interaction with αB-crystallin. PLoS One 7:e31421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy GB, Das KP, Petrash JM, Surewicz WK (2000) Temperature-dependent chaperone activity and structural properties of human alphaA- and alphaB-crystallins. J Biol Chem 275:4565–4570

    CAS  PubMed  Google Scholar 

  • Rekas A, Adda CG, Andrew Aquilina J, Barnham KJ, Sunde M, Galatis D, Williamson NA, Masters CL, Anders RF, Robinson CV, Cappai R, Carver JA (2004) Interaction of the molecular chaperone αB-crystallin with α-synuclein: effects on amyloid fibril formation and chaperone activity. J Mol Biol 340:1167–1183

    CAS  PubMed  Google Scholar 

  • Rekas A, Jankova L, Thorn DC, Cappai R, Carver JA (2007) Monitoring the prevention of amyloid fibril formation by α-crystallin. FEBS J 274:6290–6304

    CAS  PubMed  Google Scholar 

  • Renkawek K et al (1992) αB-Crystallin is present in reactive glia in Creutzfeldt-Jakob disease. Acta Neuropathol 83:324–327

    CAS  PubMed  Google Scholar 

  • Renkawek K, Voorter CE, Bosman GJ, van Workum FP, de Jong WW (1994) Expression of alpha B-crystallin in Alzheimer’s disease. Acta Neuropathol 87:155–160

    CAS  PubMed  Google Scholar 

  • Robertson AL, Headey SJ, Saunders HM, Ecroyd H, Scanlon MJ, Carver JA, Bottomley SP (2010) Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc Natl Acad Sci U S A 107:10424–10429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shammas SL, Waudby CA, Wang S, Buell AK, Knowles TP, Ecroyd H, Welland ME, Carver JA, Dobson CM, Meehan S (2011) Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys J 101:1681–1689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma KK, Ortwerth BJ (1995) Effect of cross-linking on the chaperone-like function of alpha crystallin. Exp Eye Res 61:413–421

    CAS  PubMed  Google Scholar 

  • Shi C, Yang X, Bu X, Hou N, Chen P (2017) Alpha B-crystallin promotes the invasion and metastasis of colorectal cancer via epithelial-mesenchymal transition. Biochem Biophys Res Commun 489:369–374

    CAS  PubMed  Google Scholar 

  • Shum W-K, Maleknia SD, Downard KM (2005) Onset of oxidative damage in α-crystallin by radical probe mass spectrometry. Anal Biochem 344:247–256

    CAS  PubMed  Google Scholar 

  • Srinivas PNBS, Reddy PY, Reddy GB (2008) Significance of α-crystallin heteropolymer with a 3:1 αA/αB ratio: chaperone-like activity, structure and hydrophobicity. Biochem J 414:453–460

    CAS  PubMed  Google Scholar 

  • Srinivas P, Narahari A, Petrash JM, Swamy MJ, Reddy GB (2010) Importance of eye lens α-crystallin heteropolymer with 3:1 αA to αB ratio: stability, aggregation, and modifications. IUBMB Life 62:693–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Ma Z, Li Y, Liu B, Li Z, Ding X, Gao Y, Ma W, Tang X, Li X, Shen Y (2005) Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans. J Med Genet 42:706–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thampi P, Hassan A, Smith JB, Abraham EC (2002) Enhanced C-terminal truncation of αA- and αB-crystallins in diabetic lenses. Invest Ophthalmol Vis Sci 43:3265–3272

    PubMed  Google Scholar 

  • Tkachenko O, Benesch JL, Baldwin AJ (2018) αB-crystallin inhibits amyloidogenesis by disassembling aggregation nuclei. bioRxiv 300541. https://doi.org/10.1101/300541

  • Treweek TM, Rekas A, Lindner RA, Walker MJ, Aquilina JA, Robinson CV, Horwitz J, Perng MD, Quinlan RA, Carver JA (2005) R120G αB-crystallin promotes the unfolding of reduced α-lactalbumin and is inherently unstable. FEBS J 272:711–724

    CAS  PubMed  Google Scholar 

  • Treweek TM, Meehan S, Ecroyd H, Carver JA (2015) Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci 72:429–451

    CAS  PubMed  Google Scholar 

  • van den Oetelaar PJ, van Someren PF, Thomson JA, Siezen RJ, Hoenders HJ (1990) A dynamic quaternary structure of bovine alpha-crystallin as indicated from intermolecular exchange of subunits. Biochemistry 29:3488–3493

    PubMed  Google Scholar 

  • van Noort JM et al (1995) The small heat-shock protein αB-crystallin as candidate autoantigen in multiple sclerosis. Nature 375:798–801

    PubMed  Google Scholar 

  • Vicart P, Caron A, Guicheney P, Li Z, Prévost MC, Faure A, Chateau D, Chapon F, Tomé F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95

    CAS  PubMed  Google Scholar 

  • Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G, Ciryam P, Morimoto RI, Dobson CM, Vendruscolo M, Mann M, Hartl FU (2015) Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161:919–932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Zhang J, Xu Y, Ren K, Xie WL, Yan YE, Zhang BY, Shi Q, Liu Y, Dong XP (2013) Abnormally Upregulated αB-crystallin was highly coincidental with the astrogliosis in the brains of scrapie-infected hamsters and human patients with prion diseases. J Mol Neurosci 51:734–748

    CAS  PubMed  Google Scholar 

  • Wanschitz J, Ehling R, Löscher WN, Künz B, Deisenhammer F, Kuhle J, Budka H, Reindl M, Berger T (2008) Intrathecal anti-αB-crystallin IgG antibody responses: potential inflammatory markers in Guillain-Barré syndrome. J Neurol 255:917–924

    CAS  PubMed  Google Scholar 

  • Waudby CA, Knowles TP, Devlin GL, Skepper JN, Ecroyd H, Carver JA, Welland ME, Christodoulou J, Dobson CM, Meehan S (2010) The interaction of alphaB-crystallin with mature alpha-synuclein amyloid fibrils inhibits their elongation. Biophys J 98:843–851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winner B et al (2011) In vivo demonstration that α-synuclein oligomers are toxic. Proc Natl Acad Sci 108:4194–4199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M et al (2012) Oligomerization with wt αA- and αB-crystallins reduces proteasome-mediated degradation of C-terminally truncated αA-crystallin. Investig Opthalmol Vis Sci 53:2541–2550

    CAS  Google Scholar 

  • Wu JW et al (2014) Comparative analysis of human γD-crystallin aggregation under physiological and low pH conditions. PLoS One 9:e112309

    PubMed  PubMed Central  Google Scholar 

  • Yilmaz M, Karatas OF, Yuceturk B, Dag H, Yener M, Ozen M (2015) Alpha-B-crystallin expression in human laryngeal squamous cell carcinoma tissues. Head Neck 37:1344–1348

    PubMed  Google Scholar 

  • Zhang H et al (2010) Selective degradation of aggregate-prone CryAB mutants by HSPB1 is mediated by ubiquitin–proteasome pathways. J Mol Cell Cardiol 49:918–930

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Carver.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 81.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, J., Carver, J.A. The multifaceted nature of αB-crystallin. Cell Stress and Chaperones 25, 639–654 (2020). https://doi.org/10.1007/s12192-020-01098-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-020-01098-w

Keywords

Navigation