Skip to main content
Log in

Polymorphisms in the HSP90AA1 5′ flanking region are associated with scrapie incubation period in sheep

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Susceptibility to scrapie is mainly controlled by point mutations at the PRNP locus. However, additional quantitative trait loci (QTL) have been identified across the genome including a region in OAR18. The gene which encodes the inducible form of the cytoplasmic Hsp90 chaperone (HSP90AA1) maps within this region and seems to be associated with the resistance/susceptibility to scrapie in sheep. Here, we have analyzed several polymorphisms which were previously described in the ovine HSP90AA1 5′ flanking region and in intron 10 in two naturally scrapie infected Romanov sheep populations. First, we have studied 58 ARQ/VRQ animals pertaining to the sire family where the QTL influencing scrapie incubation period in OAR18 was detected. We have found a significant association between polymorphisms localized at −660 and −528 in the HSP90AA1 5′ flanking region and the scrapie incubation period. These two polymorphisms have also been studied in a second sample constituted by 62 VRQ/VRQ sheep showing an extreme incubation period. Results are concordant with the first dataset. Finally, we have studied the HSP90AA1 expression in scrapie and control animals (N = 41) with different HSP90AA1 genotypes by real time PCR on blood samples. The HSP90AA1 expression rate was equivalent in CC−600AA−528 and CG−600AG−528 scrapie resistant animals (ARR/ARR) and was higher in their CC−600AA−528 than in their CG−600AG−528 scrapie susceptible counterparts (VRQ/VRQ). Our results support the hypothesis that the ovine HSP90AA1 gene acts as a modulator of scrapie susceptibility, contributing to the observed differences in the incubation period of scrapie infected animals with the same PRNP genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bai L, Logsdon C, Merchant JL (2002) Regulation of epithelial cell growth by ZBP-89: potential relevance in pancreatic cancer. International Journal of Gastrointestinal Cancer 31:79–88

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Merchant JL (2001) ZBP-89 promotes growth arrest through stabilization of p53. Mol Cell Biol 21:4670–4683

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Merchant JL (2003) Transcription factor ZBP-89 is required for STAT1 constitutive expression. Nucl Acids Res 31:7264–7270

    Article  CAS  PubMed  Google Scholar 

  • Basler K, Oesch B, Scott M, Westaway D, Walchli M, Groth DF, McKinley MP, Prusiner SB, Weissmann C (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46:417–428

    Article  CAS  PubMed  Google Scholar 

  • Baylis M, Chihota C, Stevenson E, Goldmann W, Smith A, Sivam K, Tongue S, Gravenor MB (2004) Risk of scrapie in British sheep of different prion protein genotype. J Gen Virol 85:2735–2740

    Article  CAS  PubMed  Google Scholar 

  • Carlson GA, Goodman PA, Lovett M, Taylor BA, Marshall ST, Peterson-Torchia M, Westaway D, Prusiner SB (1988) Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time. Mol Cell Biol 8:5528–5540

    CAS  PubMed  Google Scholar 

  • DeArmond SJ, Prusiner SB (1995) Etiology and pathogenesis of prion diseases. Am J Pathol 146:785–811

    CAS  PubMed  Google Scholar 

  • Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425:717–720

    Article  CAS  PubMed  Google Scholar 

  • Diaz C, Vitezica ZG, Rupp R, Andreoletti O, Elsen JM (2005) Polygenic variation and transmission factors involved in the resistance/susceptibility to scrapie in a Romanov flock. J Gen Virol 86:849–857

    Article  CAS  PubMed  Google Scholar 

  • Dickinson AG (1975) Host-pathogen interactions in scrapie. Genetics 79(Suppl):387–395

    PubMed  Google Scholar 

  • Dickinson AG, Outram GW (1988) Genetic aspects of unconventional virus infections: the basis of the virino hypothesis. Ciba Found Symp 135:63–83

    CAS  PubMed  Google Scholar 

  • Elsen JM, Amigues Y, Schelcher F, Ducrocq V, Andreoletti O, Eychenne F, Khang JV, Poivey JP, Lantier F, Laplanche JL (1999) Genetic susceptibility and transmission factors in scrapie: detailed analysis of an epidemic in a closed flock of Romanov. Arch Virol 144:431–445

    Article  CAS  PubMed  Google Scholar 

  • Goldmann W (2008) PrP genetics in ruminant transmissible spongiform encephalopathies. Vet Res 39:30

    Article  PubMed  Google Scholar 

  • Jones GW, Tuite MF (2005) Chaperoning prions: the cellular machinery for propagating an infectious protein? Bioessays 27:823–832

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. PNAS 84:2363–2367

    Article  CAS  PubMed  Google Scholar 

  • Lasmezas CI (2003) The transmissible spongiform encephalopathies. Rev Sci Tech Off Int Epizoot 22:23–36

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lyahyai J, Bolea R, Serrano C, Monleon E, Moreno C, Osta R, Zaragoza P, Badiola JJ, Martin-Burriel I (2006) Correlation between Bax overexpression and prion deposition in medulla oblongata from natural scrapie without evidence of apoptosis. Acta Neuropathol 112:451–460

    Article  CAS  PubMed  Google Scholar 

  • Lloyd SE, Onwuazor ON, Beck JA, Mallinson G, Farrall M, Targonski P, Collinge J, Fisher EM (2001) Identification of multiple quantitative trait loci linked to prion disease incubation period in mice. Proc Natl Acad Sci USA 98:6279–6283

    Article  CAS  PubMed  Google Scholar 

  • Lloyd SE, Uphill JB, Targonski PV, Fisher EM, Collinge J (2002) Identification of genetic loci affecting mouse-adapted bovine spongiform encephalopathy incubation time in mice. Neurogenetics 4:77–81

    Article  CAS  PubMed  Google Scholar 

  • Manolakou K, Beaton J, McConnell I, Farquar C, Manson J, Hastie ND, Bruce M, Jackson IJ (2001) Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. PNAS 98:7402–7407

    Article  CAS  PubMed  Google Scholar 

  • Marcos-Carcavilla A, Calvo JH, González C, Moazami-Goudarzi K, Laurent P, Bertaud M, Hayes H, Beattie AE, Serrano C, Lyahyai J, Martin-Burriel I, Serrano M (2008) Structural and functional analysis of the HSP90AA1 gene: distribution of polymorphisms among sheep with different responses to scrapie. Cell Stress Chaperones 13:19–29

    Article  CAS  PubMed  Google Scholar 

  • Marcos-Carcavilla A, Mutikainen M, González C, Calvo JH, Kantanen J, Sanz A, Marzanov NS, Pérez-Guzmán MD, Serrano M (2009) A SNP in the HSP90AA1 gene 5′ flanking region is associated with the adaptation to differential thermal conditions in the ovine species. Cell Stress & Chaperones, doi:10.1007/s12192-009-0123-z

  • Moreno CR, Cosseddu GM, Andreoletti IO, Schibler L, Roig A, Moazami-Goudarzi K, Echeynne F, Lajous D, Schelcher F, Cribiu EP, Vaiman D, Elsen JM (2003a) Identification of quantitative trait loci (QTL) modulating prion incubation period in sheep. (Identification de QTL affectant la durée d'incubation de la tremblante chez les ovins.). Toulouse: Proceedings of the International Workshop on Major Genes and QTL in Sheep and Goat

  • Moreno CR, Lantier F, Lantier I, Sarradin P, Elsen JM (2003b) Detection of new quantitative trait Loci for susceptibility to transmissible spongiform encephalopathies in mice. Genetics 165:2085–2091

    CAS  PubMed  Google Scholar 

  • Moreno CR, Cosseddu GM, Schibler L, Roig A, Moazami-Goudarzi K, Andreoletti O, Eychenne F, Lajous D, Schelcher F, Cribiu EP, Laurent P, Vaiman D, Elsen JM (2008) Identification of new quantitative trait Loci (other than the PRNP gene) modulating the scrapie incubation period in sheep. Genetics 179:723–726

    Article  CAS  PubMed  Google Scholar 

  • Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE, Prusiner SB, Weissmann C (1985) A cellular gene encodes scrapie PrP 27–30 protein. Cell 40:735–746

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (1998) Prions. PNAS 95:13363–13383

    Article  CAS  PubMed  Google Scholar 

  • Remington MC, Tarle SA, Simon B, Merchant JL (1997) ZBP-89, a Kruppel-type zinc finger protein, inhibits cell proliferation. Biochem Biophys Res Commun 237:230–234

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute (1990) SAS/STAT user’s guideline. SAS, Cary

    Google Scholar 

  • Stephenson DA, Chiotti K, Ebeling C, Groth D, DeArmond SJ, Prusiner SB, Carlson GA (2000) Quantitative trait loci affecting prion incubation time in mice. Genomics 69:47–53

    Article  CAS  PubMed  Google Scholar 

  • Tamgüney G, Giles K, Glidden DV, Lessard P, Wille H, Tremblay P, Groth DF, Yehiely F, Korth C, Moore RC, Tatzelt J, Rubinstein E, Boucheix C, Yang X, Stanley P, Lisanti MP, Dwek RA, Rudd PM, Moskovitz J, Epstein CJ, Cruz TD, Kuziel WA, Maeda N, Sap J, Ashe KH, Carlson GA, Tesseur I, Wyss-Coray T, Mucke L, Weisgraber KH, Mahley RW, Cohen FE, Prusiner SB (2008) Genes contributing to prion pathogenesis. J Gen Virol 89:1777–1788

    Article  PubMed  Google Scholar 

  • Wagner BJ, Hayes TE, Hoban CJ, Cochran BH (1990) The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. Embo J 9:4477–4484

    CAS  PubMed  Google Scholar 

  • Wang XD, Chen XM, Wang JZ, Hong Q, Feng Z, Fu B, Zhou F, Wang FY, Fan DM (2006) Signal transducers and activators of transcription 3 mediates up-regulation of angiotensin II-induced tissue inhibitor of metalloproteinase-1 expression in cultured human senescent fibroblasts. Chin Med J 119:1094–1102

    CAS  PubMed  Google Scholar 

  • Weissmann C (1991) A ‘unified theory’ of prion propagation. Nature 352:679–683

    Article  CAS  PubMed  Google Scholar 

  • Westaway D, Goodman PA, Mirenda CA, McKinley MP, Carlson GA, Prusiner SB (1987) Distinct prion proteins in short and long scrapie incubation period mice. Cell 51:651–662

    Article  CAS  PubMed  Google Scholar 

  • Yamada A, Takaki S, Hayashi F, Georgopoulos K, Perlmutter RM, Takatsu K (2001) Identification and characterization of a transcriptional regulator for the lck proximal promoter. J Biol Chem 276:18082–18089

    Article  CAS  PubMed  Google Scholar 

  • Zeiler B, Adler V, Kryukov V, Grossman A (2003) Concentration and removal of prion proteins from biological solutions. Biotechnol Appl Biochem 37:173–182

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Diab IH, Zehner ZE (2003) ZBP-89 represses vimentin gene transcription by interacting with the transcriptional activator, Sp1. Nucl Acids Res 31:2900–2914

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Langlade farm for kindly providing animal samples. This work was supported by the RTA2006-00104 INIA project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katayoun Moazami-Goudarzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcos-Carcavilla, A., Moreno, C., Serrano, M. et al. Polymorphisms in the HSP90AA1 5′ flanking region are associated with scrapie incubation period in sheep. Cell Stress and Chaperones 15, 343–349 (2010). https://doi.org/10.1007/s12192-009-0149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0149-2

Keywords

Navigation