Skip to main content
Log in

Structural and functional analysis of the HSP90AA1 gene: distribution of polymorphisms among sheep with different responses to scrapie

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Scrapie is a transmissible spongiform encephalopathy in sheep and goats. Susceptibility to this neurodegenerative disease is mainly controlled by point mutations at the PRNP locus. Other genes, apart from PRNP, have been reported to modulate resistance/susceptibility to scrapie. On the basis of several studies in Alzheimer and different transmissible spongiform encephalopathy models, HSP90AA1 was chosen as a putative positional and functional candidate gene that might be involved in the polygenic variance mentioned above. In the present work, the ovine HSP90AA1 gene including the promoter and other regulatory regions has been isolated and characterized. Several sequence polymorphisms have also been identified. FISH-mapping localized the HSP90AA1 gene on ovine chromosome OAR19q24dist, which was confirmed by linkage analysis. This chromosome region has been shown to include a quantitative trait loci (QTL) for scrapie incubation period in sheep. Expression analyses were carried out in spleen and cerebellum samples. No differences in the expression of the HSP90AA1 gene were found in any of these tissues (p > 0.05) between control and infected animal samples. Nevertheless, association analyses revealed that several polymorphisms in the 5′ and 3′ regions of the HSP90AA1 gene were differentially distributed among animals with different responses to scrapie infection. Thus, results presented here support the hypothesis that HSP90AA1 could be a positional and functional candidate gene modulating the response to scrapie in sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acin C, Martin-Burriel I, Goldmann W et al (2004) Prion protein gene polymorphisms in healthy and scrapie-affected Spanish sheep. J Gen Virol 85:2103–2110

    Article  PubMed  CAS  Google Scholar 

  • Baylis M, Chihota C, Stevenson E, Goldmann W, Smith A, Sivam K, Tongue S, Gravenor MB (2004) Risk of scrapie in British sheep of different prion protein genotype. J Gen Virol 85:2735–2740

    Article  PubMed  CAS  Google Scholar 

  • Bolea R, Monleon E, Schiller I et al (2005) Comparison of immunohistochemistry and two rapid tests for detection of abnormal prion protein in different brain regions of sheep with typical scrapie. J Vet Diagn Invest 17:467–469

    PubMed  Google Scholar 

  • Breathnach R, Chambon P (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383

    Article  PubMed  CAS  Google Scholar 

  • Carlson GA, Goodman PA, Lovett M, Taylor BA, Marshall ST, Peterson-Torchia M, Westaway D, Prusiner SB (1988) Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time. Mol Cell Biol 8:5528–5540

    PubMed  CAS  Google Scholar 

  • Crawford AM, Dodds KG, Ede AJ, et al (1995) An autosomal genetic linkage map of the sheep genome. Genetics 140:703–724

    PubMed  CAS  Google Scholar 

  • Chen B, Piel WH, Gui L, Bruford E, Monteiro A (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86:627–637

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Yang X, Moore SK, Shyamala G (1996) Cloning and characterization of the promoter for murine 84-kDa heat-shock protein. Gene 172:279–284

    Article  PubMed  CAS  Google Scholar 

  • Diaz C, Vitezica ZG, Rupp R, Andreoletti O, Elsen JM (2005) Polygenic variation and transmission factors involved in the resistance/susceptibility to scrapie in a Romanov flock. J Gen Virol 86:849–857

    Article  PubMed  CAS  Google Scholar 

  • Dickinson AG (1975) Host-pathogen interactions in scrapie. Genetics 79(Suppl):387–395

    PubMed  Google Scholar 

  • Evans CG, Wisen S, Gestwicki JE (2006) Heat shock proteins 70 and 90 inhibit early stages of amyloid beta (1–42) aggregation in vitro. J Biol Chem 281:33182–33191

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Crespo D, Juste R, Hurtado A (2005) Selection of ovine housekeeping genes for normalisation by real-time RT-PCR; analysis of PrP gene expression and genetic susceptibility to scrapie. BMC Veterinary Research 1:3

    Article  PubMed  CAS  Google Scholar 

  • Goldmann W, Baylis M, Chihota C, Stevenson E, Hunter N (2005) Frequencies of PrP gene haplotypes in British sheep flocks and the implications for breeding programmes. J Appl Microbiol 98:1294–1302

    Article  PubMed  CAS  Google Scholar 

  • Hayes H, Petit E, Dutrillaux B (1991) Comparison of RBG-banded karyotypes of cattle, sheep, and goats. Cytogenet Cell Genet 57:51–55

    Article  PubMed  CAS  Google Scholar 

  • Imai J, Maruya M, Yashiroda H, Yahara I, Tanaka K (2003) The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. Embo J 22:3557–3567

    Article  PubMed  CAS  Google Scholar 

  • Jacquier-Sarlin MR, Jornot L, Polla BS (1995) Differential Expression and Regulation of hsp70 and hsp90 by Phorbol Esters and Heat Shock. J Biol Chem 270:14094–14099

    Article  PubMed  CAS  Google Scholar 

  • Kakimura J-I, Kitamura Y, Takata K et al (2002) Microglial activation and amyloid-{beta} clearance induced by exogenous heat-shock proteins. FASEB J 16:601–603

    PubMed  CAS  Google Scholar 

  • Kang SC, Brown DR, Whiteman M et al (2004) Prion protein is ubiquitinated after developing protease resistance in the brains of scrapie-infected mice. J Pathol 203:603–608

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P (1987) Construction of Multilocus Genetic Linkage Maps in Humans 10.1073/pnas.84.8.2363. PNAS 84:2363–2367

    Article  PubMed  CAS  Google Scholar 

  • Lyahyai J, Bolea R, Serrano C et al (2006) Correlation between Bax overexpression and prion deposition in medulla oblongata from natural scrapie without evidence of apoptosis. Acta Neuropathol (Berl) 112:451–460

    Article  CAS  Google Scholar 

  • Lloyd SE, Onwuazor ON, Beck JA, Mallinson G, Farrall M, Targonski P, Collinge J, Fisher EM (2001) Identification of multiple quantitative trait loci linked to prion disease incubation period in mice. Proc Natl Acad Sci U S A 98:6279–6283

    Article  PubMed  CAS  Google Scholar 

  • Lloyd SE, Uphill JB, Targonski PV, Fisher EM, Collinge J (2002) Identification of genetic loci affecting mouse-adapted bovine spongiform encephalopathy incubation time in mice. Neurogenetics 4:77–81

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Lindquist S (2001) Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. PNAS 98:14955–14960

    Article  PubMed  CAS  Google Scholar 

  • Maddox JF, Davies KP, Crawford AM et al (2001) An enhanced linkage map of the sheep genome comprising more than 1000 Loci 10.1101/gr.GR-1350R. Genome Res 11:1275–1289

    Article  PubMed  CAS  Google Scholar 

  • Manolakou K, Beaton J, McConnell I, Farquar C, Manson J, Hastie ND, Bruce M, Jackson IJ (2001) Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. PNAS 98:7402–7407

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucl Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  • Moreno CR, Cosseddu GM, Andreoletti O et al (2003a) Identification of quantitative trait loci (QTL) modulating prion incubation period in sheep. (Identification de QTL affectant la durée d'incubation de la tremblante chez les ovins.). (Toulouse: Proceedings of the International Workshop on Major Genes and QTL in Sheep and Goat), Tolouse, France,8–11 December 2002, Communication No. 2–27

  • Moreno CR, Lantier F, Lantier I, Sarradin P, Elsen JM (2003b) Detection of new quantitative trait Loci for susceptibility to transmissible spongiform encephalopathies in mice. Genetics 165:2085–2091

    PubMed  CAS  Google Scholar 

  • Nesic D, Maquat LE (1994) Upstream introns influence the efficiency of final intron removal and RNA 3″-end formation. Genes Dev 8:363–375

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. PNAS 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute Inc., SAS/STAT® Users's Guide, version 6, Fourth Edition, Volume1, Cary, NC:, 1989

  • Soti C, Nagy E, Giricz Z, Vigh L, Csermely P, Ferdinandy P (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146:769–780

    Article  PubMed  CAS  Google Scholar 

  • Sreedhar AS, Kalmar E, Csermely P, Shen YF (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15

    Article  PubMed  CAS  Google Scholar 

  • Stephenson DA, Chiotti K, Ebeling C, Groth D, DeArmond SJ, Prusiner SB, Carlson GA (2000) Quantitative trait loci affecting prion incubation time in mice. Genomics 69:47–53

    Article  PubMed  CAS  Google Scholar 

  • Thompson AA, Wood WJ Jr., Gilly MJ, Damore MA, Omori SA, Wall R (1996) The promoter and 5′-flanking sequences controlling human B29 gene expression. Blood 87:666–673

    PubMed  CAS  Google Scholar 

  • Vaiman D, Billault A, Tabet-Aoul K, Schibler L, Vilette D, Oustry-Vaiman A, Soravito C, Cribiu EP (1999) Construction and characterization of a sheep BAC library of three genome equivalents. Mamm Genome 10:585–587

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034

  • Wagner BJ, Hayes TE, Hoban CJ, Cochran BH (1990) The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. Embo J 9:4477–4484

    PubMed  CAS  Google Scholar 

  • Wang XD, Chen XM, Wang JZ et al (2006) Signal transducers and activators of transcription 3 mediates up-regulation of angiotensin II-induced tissue inhibitor of metalloproteinase-1 expression in cultured human senescent fibroblasts. Chin Med J (Engl) 119:1094–1102

    CAS  Google Scholar 

  • Westaway D, Goodman PA, Mirenda CA, McKinley MP, Carlson GA, Prusiner SB (1987) Distinct prion proteins in short and long scrapie incubation period mice. Cell 51:651–662

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Takaki S, Hayashi F, Georgopoulos K, Perlmutter RM, Takatsu K (2001) Identification and Characterization of a Transcriptional Regulator for the lck Proximal Promoter. J Biol Chem 276:18082–18089

    Article  PubMed  CAS  Google Scholar 

  • Yedidia Y, Horonchik L, Tzaban S, Yanai A, Taraboulos A (2001) Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J 20:5383–5391

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Yu J, Cheng XK, Ding L, Heng FY, Wu NH, Shen YF (1999) Regulation of human hsp90alpha gene expression. FEBS Lett 444:130–135

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Diab IH, Zehner ZE (2003) ZBP-89 represses vimentin gene transcription by interacting with the transcriptional activator, Sp1. Nucl Acids Res 31:2900–2914

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the CERSYRA-Valdepeñas and AGRAMA breeders association, CSIC-León, CITA-Aragón, Prion Research Centre of the University of Zaragoza—and INIA-Madrid for kindly providing Manchega, Awassi, Assaf, Rasa Aragonesa and Mouflon samples. We are very grateful to Dr. K.G. Dodds for his suggestions and English correction of the manuscript, to Dr. MA Roca for helping us with the PCRs improvement, to Dr. C.R. Moreno for her suggestions in the statistical area, to Dr. M.E.F. Alves for her continuous help and to Dr. E.P. Cribiu and Dr. P. Zaragoza for allowing us to perform the cytogenetic mapping and the expression analysis in their respective laboratories. This work was supported by the RTA2006–00104 INIA project, and a Predoctoral Grant from the INIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ane Marcos-Carcavilla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

(DOC 55.5 KB)

Appendix 2

(DOC 42.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcos-Carcavilla, A., Calvo, J.H., González, C. et al. Structural and functional analysis of the HSP90AA1 gene: distribution of polymorphisms among sheep with different responses to scrapie. Cell Stress and Chaperones 13, 19–29 (2008). https://doi.org/10.1007/s12192-007-0004-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-007-0004-2

Keywords

Navigation