Skip to main content
Log in

Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The genome of Ciona intestinalis contains eight genes for HSP70 superfamily proteins, 36 genes for J-proteins, a gene for a J-like protein, and three genes for BAG family proteins. To understand the stress responses of genes in the HSP70 chaperone system comprehensively, the transcriptional profiles of these 48 genes under heat stress and endoplasmic reticulum (ER) stress were studied using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) analysis. Heat stress treatment increased the messenger RNA (mRNA) levels of six HSP70 superfamily genes, eight J-protein family genes, and two BAG family genes. In the cytoplasmic group of the DnaK subfamily of the HSP70 family, Ci-HSPA1/6/7-like was the only heat-inducible gene and Ci-HSPA2/8 was the only constitutively active gene which showed striking simplicity in comparison with other animals that have been examined genome-wide so far. Analyses of the time course and temperature dependency of the heat stress responses showed that the induction of Ci-HSPA1/6/7-like expression rises to a peak after heat stress treatment at 28°C (10°C upshift from control temperature) for 1 h. ER stress treatment with Brefeldin A, a drug that is known to act as ER stress inducer, increased the mRNA levels of four HSP70 superfamily genes and four J-protein family genes. Most stress-inducible genes are conserved between Ciona and vertebrates, as expected from a close evolutionary relationship between them. The present study characterized the stress responses of HSP70 chaperone system genes in Ciona for the first time and provides essential data for comprehensive understanding of the functions of the HSP70 chaperone system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul KM, Terada K, Gotoh T, Hafizur RM, Mori M (2002) Characterization and functional analysis of a heart-enriched DnaJ/ Hsp40 homolog dj4/DjA4. Cell Stress Chaperones 7:156–166

    Article  CAS  PubMed  Google Scholar 

  • Alberti S, Esser C, Hohfeld J (2003) BAG-1-a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225–231

    Article  PubMed  Google Scholar 

  • Bellas J, Beiras R, Vázquez E (2003) A standardisation of Ciona intestinalis (Chordata, Ascidiacea) embryo-larval bioassay for ecotoxicological studies. Water Res 37:4613–4622

    Article  CAS  PubMed  Google Scholar 

  • Bernales S, Papa FR, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22:487–508

    Article  CAS  PubMed  Google Scholar 

  • Bettencourt BR, Feder ME (2001) Hsp70 duplication in the Drosophila melanogaster species group: how and when did two become five? Mol Biol Evol 18:1272–1282

    CAS  PubMed  Google Scholar 

  • Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17

    Article  CAS  PubMed  Google Scholar 

  • Brocchieri L, Conway de Macario E, Macario AJ (2008) hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 8:19

    Article  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Caplan AJ (2003) What is a co-chaperone? Cell Stress Chaperones 8:105–107

    Article  PubMed  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Sasaki A, Nakayama A, Takamura K, Satoh N (2004) Development of Ciona intestinalis juveniles (through 2nd ascidian stage). Zoolog Sci 21:285–298

    Article  PubMed  Google Scholar 

  • Craig EA, Huang P, Aron R, Andrew A (2006) The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 156:1–21

    Article  CAS  PubMed  Google Scholar 

  • Cunnea PM, Miranda-Vizuete A, Bertoli G, Simmen T, Damdimopoulos AE, Hermann S, Leinonen S, Huikko MP, Gustafsson JA, Sitia R, Spyrou G (2003) ERdj5, an endoplasmic reticulum (ER)-resident protein containing DnaJ and thioredoxin domains, is expressed in secretory cells of following ER stress. J Biol Chem 278:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KE, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang HG, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee BI, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  CAS  PubMed  Google Scholar 

  • Doong H, Vrailas A, Kohn EC (2002) What’s in the ‘BAG’?—A functional domain analysis of the BAG-family proteins. Cancer Lett 188:25–32

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  CAS  PubMed  Google Scholar 

  • Easton DP, Kaneko Y, Subjeck JR (2000) The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 5:276–290

    Article  CAS  PubMed  Google Scholar 

  • Elbein AD (1991) Glycosidase inhibitors: Inhibitors of N-linked oligosaccharide processing. FASEB J 5:3055–3063

    CAS  PubMed  Google Scholar 

  • Eisenberg E, Greene LE (2007) Multiple roles of auxilin and hsc70 in clathrin-mediated endocytosis. Traffic 8:640–646

    Article  CAS  PubMed  Google Scholar 

  • Fan CY, Lee S, Cyr DM (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8:309–316

    Article  CAS  PubMed  Google Scholar 

  • Gellner K, Praetzel G, Bosch TCG (1992) Cloning and expression of a heat-inducible hsp70 gene in two species of Hydra which differ in their stress response. Eur J Biochem 210:683–691

    Article  CAS  PubMed  Google Scholar 

  • Girardot F, Monnier V, Tricoire H (2004) Genome wide analysis of common and specific stress responses in adult drosophila melanogaster. BMC Genomics 5:74

    Article  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40–Hsp70 interactions. Protein Sci 14:1697–1709

    Article  CAS  PubMed  Google Scholar 

  • Heschl MF, Baillie DL (1990) The HSP70 multigene family of Caenorhabditis elegans. Comp Biochem Physiol B 96:633–637

    Article  CAS  PubMed  Google Scholar 

  • Hussain SG, Ramaiah KVA (2007) Endoplasmic reticulum: stress, signalling and apoptosis. Curr Sci 93:1684–1696

    CAS  Google Scholar 

  • Hunziker W, Whitney JA, Mellman I (1992) Brefeldin A and the endocytic pathway: possible implications for membrane traffic and sorting. FEBS Lett 307:93–96

    Article  CAS  PubMed  Google Scholar 

  • Imai KS, Satoh N, Satou Y (2003) A Twist-like bHLH gene is a downstream factor of an endogenous FGF and determines mesenchymal fate in the ascidian embryos. Development 130:4461–4472

    Article  CAS  PubMed  Google Scholar 

  • Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Lund J, Kiraly M, Duke K, Jiang M, Stuart JM, Eizinger A, Wylie BN, Davidson GS (2001) A gene expression map for Caenorhabditis elegans. Science 293:2087–2092

    Article  CAS  PubMed  Google Scholar 

  • Kristensen TN, Sørensen P, Kruhøffer M, Pedersen KS, Loeschcke V (2005) Genome-wide analysis on inbreeding effects on gene expression in Drosophila melanogaster. Getetics 171:157–167

    Article  CAS  Google Scholar 

  • Kroiher M, Walther M, Berking S (1992) Heat shock as inducer of metamorphosis in marine invertebrates. Roux’s Arch Dev Biol 201:169–172

    Article  Google Scholar 

  • Lecca MR, Wagner U, Patrignani A, Berger EG, Hennet T (2005) Genome-wide analysis of the unfolded protein response in fibroblasts from congenital disorders of glycosylation type-I patients. FASEB J 19:240–242

    CAS  PubMed  Google Scholar 

  • Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448–7459

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Hendershot LM (2002) The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress Chaperones 7:222–229

    Article  CAS  PubMed  Google Scholar 

  • Maroto R, Hamill OP (2001) Brefeldin A block of integrin-dependent mechanosensitive ATP release from Xenopus oocytes reveals a novel mechanism of mechanotransduction. J Biol Chem 276:23867–23872

    Article  CAS  PubMed  Google Scholar 

  • Maside X, Bartolomé C, Charlesworth B (2002) S-element insertions are associated with the evolution of the Hsp70 genes in Drosophila melanogaster. Curr Biol 12:1686–1691

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  Google Scholar 

  • Miskovic D, Heikkila JJ (1999) Constitutive and stress-inducible expression of the endoplasmic reticulum heat shock protein 70 gene family member, immunoglobulin-binding protein (BiP), during Xenopus laevis early development. Dev Genet 25:31–39

    Article  CAS  PubMed  Google Scholar 

  • Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  PubMed  Google Scholar 

  • Murray JI, Whitfield ML, Trinklein ND, Myers RM, Brown PO, Botstein D (2004) Diverse and specific gene expression responses to stresses in cultured human cells. Mol Biol Cell 15:2361–2374

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Kamiguchi K, Torigoe T, Nabeta C, Hirohashi Y, Asanuma H, Tobioka H, Koge N, Harada O, Tamura Y, Nagano H, Yano S, Chiba S, Matsumoto H, Sato N (2004) Localization and function in endoplasmic reticulum stress tolerance of ERdj3, a new member of Hsp40 family protein. Cell Stress Chaperones 9:253–264

    Article  CAS  PubMed  Google Scholar 

  • Nikolaidis N, Nei M (2004) Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes. Mol Biol Evol 21:498–505

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka K, Hata M (2000) Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 5:98–112

    Article  CAS  PubMed  Google Scholar 

  • Pagliuca MG, Lerose R, Cigliano S, Leone A (2003) Regulation by heavy metals and temperature of the human BAG-3 gene, a modulator of Hsp70 activity. FEBS Lett 541:11–15

    Article  CAS  PubMed  Google Scholar 

  • Piano A, Asirelli C, Caselli F, Fabbri E (2002) Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe. Cell Stress Chaperones 7:250–257

    Article  CAS  PubMed  Google Scholar 

  • Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570

    Article  CAS  PubMed  Google Scholar 

  • Satoh N, Satou Y, Davidson B, Levine M (2003) Ciona intestinalis: an emerging model for whole-genome analyses. Trends Genet 19:376–381

    Article  CAS  PubMed  Google Scholar 

  • Satou Y, Imai KS, Levine M, Kohara Y, Rokhsar D, Satoh N (2003a) A genomewide survey of developmentally relevant genes in Ciona intestinalis. I. Genes for bHLH transcription factors. Dev Genes Evol 213:213–221

    Article  CAS  PubMed  Google Scholar 

  • Satou Y, Kawashima T, Kohara Y, Satoh N (2003b) Large scale EST analyses in Ciona intestinalis: its application as Northern blot analyses. Dev Genes Evol 213:314–318

    Article  CAS  PubMed  Google Scholar 

  • Satou Y, Yamada L, Mochizuki Y, Takatori N, Kawashima T, Sasaki A, Hamaguchi M, Awazu S, Yagi K, Sasakura Y, Nakayama A, Ishikawa H, Inaba K, Satoh N (2002) A cDNA resource from the basal chordate Ciona intestinalis. Genesis 33:153–154

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Meunier L, Hendershot LM (2002) Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J Biol Chem 277:15947–15956

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Zhang K, Kaufman RJ (2004) The unfolded protein response–a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 28:79–92

    CAS  PubMed  Google Scholar 

  • Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894

    Article  CAS  PubMed  Google Scholar 

  • Sørensen JG, Nielsen MM, Kruhøffer M, Justesen J, Loeschcke V (2005) Full genome gene expression analysis of the heat stress response in Drosophila melanogaster. Cell Stress Chaperones 10:312–328

    Article  PubMed  Google Scholar 

  • Szustakowski JD, Kosinski PA, Marrese CA, Lee JH, Elliman SJ, Nirmala N, Kemp DM (2007) Dynamic resolution of functionally related gene sets in response to acute heat stress. BMC Mol Biol 8:46

    Article  PubMed  Google Scholar 

  • Takayama S, Reed JC (2001) Molecular chaperone targeting and regulation by BAG family proteins. Nat Cell Biol 3:E237–E241

    Article  CAS  PubMed  Google Scholar 

  • Thastrup O, Cullen PJ, Drøbak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci USA 87:2466–2470

    Article  CAS  PubMed  Google Scholar 

  • Trinklein ND, Chen WC, Kingston RE, Myers RM (2004) Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Cell Stress Chaperones 9:21–28

    CAS  PubMed  Google Scholar 

  • Voellmy R (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9:122–133

    Article  CAS  PubMed  Google Scholar 

  • Wada S, Hamada M, Satoh N (2006) A genomewide analysis of genes for the heat shock protein 70 chaperone system in the ascidian Ciona intestinalis. Cell Stress Chaperones 11:23–33

    Article  CAS  PubMed  Google Scholar 

  • Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571

    Article  CAS  PubMed  Google Scholar 

  • Westfall TA, Hjertos B, Slusarski DC (2003) Requirement for intracellular calcium modulation in zebrafish dorsal–ventral patterning. Dev Biol 259:380–391

    Article  CAS  PubMed  Google Scholar 

  • Yamada L, Kobayashi K, Degnan B, Satoh N, Satou Y (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. IV. Genes for HMG transcriptional regulators, bZip and GATA/Gli/Zic/Snail. Dev Genes Evol 213:245–253

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Frank CL, Korth MJ, Sopher BL, Novoa I, Ron D, Katze MG (2002) Control of PERK elF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc Natl Acad Sci USA 99:15920–15925

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Kazuko Hirayama and all members of the Maizuru Fisheries Research Station of Kyoto University for culturing of C. intestinalis; Yutaka Satou for cDNA resources; and Lixy Yamada for experimental advice. This work was supported by NBRP (National Bioresource Project) and KAKENHI [Grants-in-Aid for Young Scientists (B), 20770183] from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Wada.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Phylogenetic tree of ER-resident lectin chaperones constructed based on the full-length sequences of human, mouse, D. melanogaster, and C. intestinalis sequences. The number at each branch indicates the percentage of times that a node was supported in 1,000 bootstrap pseudoreplications. Percentages less than 49% are omitted for simplicity. Ciona proteins are indicated by large black dots. Proteins of other animals are designated with the accession number registered in public databases followed by abbreviation of the species (HS for human, MM for mouse, and DM for D. melanogaster) and gene name. An unrooted tree is shown as a rooted tree for simplicity. The scale bar indicates an evolutionary distance of 0.1 amino acid substitutions per position (EPS 81 kb)

High resolution image

Supplementary Fig. S2

Phylogenetic tree of PERK and related kinases constructed based on the kinase domain sequences of human, mouse, and C. intestinalis. The number at each branch indicates the percentage of times that a node was supported in 1,000 bootstrap pseudoreplications. Percentages less than 49% are omitted for simplicity. Ciona proteins are indicated by large black dots. Proteins of other animals are designated with the accession number registered in public databases, followed by abbreviation of the species (HS for human and MM for mouse) and gene name. An unrooted tree is shown as a rooted tree for simplicity. Bars on the right indicate gene groups. Genes for the PKR, GCN2, and HRI groups are added to the analysis as outgroups. The scale bar indicates an evolutionary distance of 0.05 amino acid substitutions per position (EPS 79 kb)

High resolution image

Supplementary Fig. S3

Phylogenetic tree of IRE1 proteins constructed based on the full-length sequences of human, mouse, C. intestinalis, C. elegans, and D. melanogaster. The number at each branch indicates the percentage of times that a node was supported in 1,000 bootstrap pseudoreplications. Percentages less than 49% are omitted for simplicity. Ciona protein is indicated by a large black dot. Proteins of other animals are designated with the accession number registered in public databases, followed by abbreviation of the species (HS for human, MM for mouse, DM for D. melanogaster, and CE for C. elegans) and gene name. An unrooted tree is shown as a rooted tree for simplicity. Bars on the right indicate gene groups. The scale bar indicates an evolutionary distance of 0.05 amino acid substitutions per position (EPS 74 kb)

High resolution image

Supplementary Table S1

Primers used for real time RT-PCR (DOC 75 kb)

Supplementary Table S2

EST counts (out of 336188) of genes for the HSP70 chaperone system (DOC 84 kb)

Supplementary Table S3

Genes for ER-resident lectin chaperones in the C. intestinalis genome (DOC 26 kb)

Supplementary Table S4

Domain configurations of ER-resident lectin chaperones in Ciona and humans (DOC 26 kb)

Supplementary Table S5

Genes for ER stress sensors in the C. intestinalis genome (DOC 28 kb)

Supplementary Table S6

Domain configurations of ER stress sensors in C. intestinalis and humans (DOC 28 kb)

Supplementary Table S7

Sequences used for analysis (DOC 24 kb)

Supplementary Table S8

Comparison of stress responses of HSP70 chaperone system genes in Ciona and vertebrates (DOC 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujikawa, T., Munakata, T., Kondo, Si. et al. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress. Cell Stress and Chaperones 15, 193–204 (2010). https://doi.org/10.1007/s12192-009-0133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0133-x

Keywords

Navigation