Skip to main content
Log in

The atheroprotective properties of Hsp70: a role for Hsp70-endothelial interactions?

  • Perspective and Reflection Article
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Although heat shock (stress) proteins are typically regarded as being exclusively intracellular molecules, it is now apparent that they can be released from cells in the absence of cellular necrosis. We and others have reported the presence of Hsp60 (HSPD1) and Hsp70 (HSPA1A) in the circulation of normal individuals and our finding that increases in carotid intima-media thicknesses (a measure of atherosclerosis) in subjects with hypertension at a 4-year follow-up are less prevalent in those having high serum Hsp70 (HSPA1A) levels at baseline suggests that circulating Hsp70 (HSPA1A) has atheroprotective effects. Given that circulating Hsp70 (HSPA1A) levels can be in the range which has been shown to elicit a number of biological effects in vitro, and our preliminary findings that Hsp70 (HSPA1A) binds to and is internalised by human endothelial cell populations, we speculate on the mechanisms that might be involved in the apparent atheroprotective properties of this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Ahmed-Choudhury J, Russell CL, Randhawa S, Young LS, Adams DH, Afford SC (2003) Differential induction of nuclear factor-B and activator protein-1 activity after CD40 ligation is associated with primary human hepatocyte apoptosis or intrahepatic endothelial cell proliferation. Mol Biol Cell 14:1334–1345. doi:10.1091/mbc.E02-07-0378

    Article  PubMed  CAS  Google Scholar 

  • Ahn JH, Ko YG, Park WY, Kang YS, Chung HY, Seo JS (1999) Suppression of ceramide-mediated apoptosis by HSP70. Mol Cells 9:200–206

    CAS  PubMed  Google Scholar 

  • Asea A, Kraeft S-K, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) Hsp70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442. doi:10.1038/74697

    Article  CAS  PubMed  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Baré O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70. Role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034. doi:10.1074/jbc.M200497200

    Article  CAS  PubMed  Google Scholar 

  • Bassan M, Zamostiano R, Giladi E, Davidson A, Wollman Y, Pitman J, Hauser J, Brenneman DE, Gozes I (1998) The identification of secreted heat shock 60-like protein from rat glial cells and a human neuroblastoma cell line. Neurosci Lett 250:37–40. doi:10.1016/S0304-3940(98)00428-5

    Article  CAS  PubMed  Google Scholar 

  • Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285. doi:10.1083/jcb.200208083

    Article  CAS  PubMed  Google Scholar 

  • Binder CJ, Chang MK, Shaw PX, Miller YI, Hartvigsen K, Dewan A, Witztum JL (2002) Innate and acquired immunity in atherogenesis. Nat Med 8:1218–1226. doi:10.1038/nm1102-1218

    Article  CAS  PubMed  Google Scholar 

  • Binder RJ, Vatner R, Srivastava P (2004) The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64:442–451. doi:10.1111/j.1399-0039.2004.00299.x

    Article  CAS  PubMed  Google Scholar 

  • Blake GJ, Ridker PM (2001) Novel clinical markers of vascular inflammation. Circ Res 89:763–771. doi:10.1161/hh2101.099270

    Article  CAS  PubMed  Google Scholar 

  • Blankenberg S, Barbaux S, Tiret L (2003) Adhesion molecules and atherosclerosis. Atherosclerosis 170:191–203. doi:10.1016/S0021-9150(03)00097-2

    Article  CAS  PubMed  Google Scholar 

  • Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, Morrison SG, Morrison RP, Arditi M (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168:1435–1440

    CAS  PubMed  Google Scholar 

  • Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J (2003) Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 197:403–411. doi:10.1084/jem.20021633

    Article  CAS  PubMed  Google Scholar 

  • Child DF, Williams CP, Jones RP, Hudson PR, Jones M, Smith CJ (1995) Heat shock protein studies in type 1 and type 2 diabetes and human islet cell culture. Diabetic Med 12:595–599

    Article  CAS  PubMed  Google Scholar 

  • Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271:30847–30857. doi:10.1074/jbc.271.48.30847

    Article  CAS  PubMed  Google Scholar 

  • Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis M, Gutierrez-Ramos J-S, Connelly PW, Milstone DS (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107:1255–1262. doi:10.1172/JCI11871

    Article  CAS  PubMed  Google Scholar 

  • Dansky HM, Barlow CB, Lominska C, Sikes JL, Kao C, Weinsaft J, Cybulsky MI, Smith JD (2001) Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol 21:1662–1667. doi:10.1161/hq1001.096625

    Article  CAS  PubMed  Google Scholar 

  • de Boer OJ, Becker AE, van der Wal AC (2003) T lymphocytes in atherogenesis—functional aspects and antigenic repertoire. Cardiovasc Res 60:78–86. doi:10.1016/S0008-6363(03)00341-9

    Article  PubMed  CAS  Google Scholar 

  • de Kleijn D, Pasterkamp G (2003) Toll-like receptors in cardiovascular diseases. Cardiovasc Res 60:58–67. doi:10.1016/S0008-6363(03)00348-1

    Article  PubMed  CAS  Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J, Jeannin P (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353–362. doi:10.1016/S1074-7613(02)00388-6

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Zeiher AM (2000) Reactive oxygen species and vascular cell apoptosis in response to angiotensin II and pro-atherosclerotic factors. Reg Pep 90:19–25. doi:10.1016/S0167-0115(00)00105-1

    Article  CAS  Google Scholar 

  • Dimmeler S, Hermann C, Zeiher AM (1998) Apoptosis of endothelial cells. Contribution to the pathophysiology of atherosclerosis? Eur Cytokine Network 9:697–698

    CAS  Google Scholar 

  • Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105:1158–1161

    CAS  PubMed  Google Scholar 

  • Egashira K, Inou T, Hirooka Y, Yamada A, Maruoka Y, Kai H, Sugimachi M, Suzuki S, Takeshita A (1993) Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J Clin Invest 91:29–37. doi:10.1172/JCI116183

    Article  CAS  PubMed  Google Scholar 

  • Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    CAS  PubMed  Google Scholar 

  • Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ, Polentarutti N, Muzio M, Arditi M (2000) Bacterial lipopolysaccharide activates NF-κB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 275:11058–11063. doi:10.1074/jbc.275.15.11058

    Article  CAS  PubMed  Google Scholar 

  • Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M (2001) Bacterial lipopolysaccharide and IFN-γ induce toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-κB activation. J Immunol 166:2018–2024

    CAS  PubMed  Google Scholar 

  • Feder JH, Rossi JM, Solomon J, Solomon N, Lindquist S (1992) The consequences of expressing hsp70 in Drosophila cells at normal temperatures. Genes Dev 6:1402–1413. doi:10.1101/gad.6.8.1402

    Article  CAS  PubMed  Google Scholar 

  • Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247. doi:10.1158/0008-5472.CAN-04-3804

    Article  CAS  PubMed  Google Scholar 

  • George J, Afek A, Gilburd B, Levkovitz H, Shaish A, Goldberg I, Kopolovic Y, Wick G, Shoenfeld Y, Harats D (1998) Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138:147–152. doi:10.1016/S0021-9150(98)00015-X

    Article  CAS  PubMed  Google Scholar 

  • Goyert SM, Ferrero EM, Seremetis SV, Winchester RJ, Silver J, Mattison AC (1986) Biochemistry and expression of myelomonocytic antigens. J Immunol 137:3909–3914

    CAS  PubMed  Google Scholar 

  • Hansson GK (2002) Vaccination against atherosclerosis. Science or fiction? Circulation 106:1599–1601. doi:10.1161/01.CIR.0000035275.64667.A3

    Article  PubMed  Google Scholar 

  • Haziot A, Chen S, Ferrero E, Low MG, Silber R, Goyert SM (1988) The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol 141:547–552

    CAS  PubMed  Google Scholar 

  • Hightower LE, Guidon PT (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266. doi:10.1002/jcp.1041380206

    Article  CAS  PubMed  Google Scholar 

  • Hijiya N, Miyake K, Akashi S, Matsuura K, Higuchi Y, Yamamoto S (2002) Possible involvement of toll-like receptor 4 in endothelial cell activation of larger vessels in response to lipopolysaccharide. Pathobiology 70:18–25. doi:10.1159/000066000

    Article  CAS  PubMed  Google Scholar 

  • Hollenbaugh D, Mischel-Petty N, Edwards CP, Simon JC, Denfeld RW, Kiener PA, Aruffo A (1995) Expression of functional CD40 by vascular endothelial cells. J Exp Med 182:33–40. doi:10.1084/jem.182.1.33

    Article  CAS  PubMed  Google Scholar 

  • House SD, Guidon PTJ, Perdrizet GA, Rewinski M, Kyriakos R, Bockman RS, Mistry T, Gallagher PA, Hightower LE (2001) Effects of heat shock, stannous chloride, and gallium nitrate on the rat inflammatory response. Cell Stress Chaperones 6:164–171. doi:10.1379/1466-1268(2001)006<0164:EOHSSC>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Li D, Sawamura T, Mehta JL (2003) Oxidized LDL through LOX-1 modulates LDL-receptor expression in human coronary artery endothelial cells. Biochem Biophys Res Commun 307:1008–1012. doi:10.1016/S0006-291X(03)01295-6

    Article  CAS  PubMed  Google Scholar 

  • Jäättelä M, Wissing D, Bauer PA, Li GC (1992) Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J 11:3507–3512

    PubMed  Google Scholar 

  • Jersmann HP, Hii CS, Hodge GL, Ferrante A (2001) Synthesis and surface expression of CD14 by human endothelial cells. Infect Immun 69:479–485. doi:10.1128/IAI.69.1.479-485.2001

    Article  CAS  PubMed  Google Scholar 

  • Johnson AD, Tytell M (1993) Exogenous Hsp70 becomes cell associated, but not internalised by stressed arterial smooth muscle cells. In Vitro Cell Dev Biol 29A:807–812. doi:10.1007/BF02634348

    Article  CAS  Google Scholar 

  • Johnson AD, Berberian PA, Bond MG (1990) Effect of heat shock proteins on survival of isolated aortic cells from normal and atherosclerotic cynomolgus macaques. Atherosclerosis 84:111–119. doi:10.1016/0021-9150(90)90080-3

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111. doi:10.1007/s12192-008-0068-7

    Article  CAS  PubMed  Google Scholar 

  • Karmann K, Hughes CC, Schechner J, Fanslow WC, Pober JS (1995) CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc Natl Acad Sci U S A 92:4342–4346. doi:10.1073/pnas.92.10.4342

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Shin HM, Baek W (2005) Heat-shock response is associated with decreased production of interleukin-6 in murine aortic vascular smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 371:27–33. doi:10.1007/s00210-004-1007-5

    Article  CAS  PubMed  Google Scholar 

  • Kingston AE, Hicks CA, Colston MJ, Billingham MEJ (1996) A 71-kD heat shock protein (hsp) from Mycobacterium tuberculosis has modulatory effects on experimental rat arthritis. Clin Exp Immunol 103:77–82. doi:10.1046/j.1365-2249.1996.929628.x

    Article  CAS  PubMed  Google Scholar 

  • Kinlay S, Libby P, Ganz P (2001) Endothelial function and coronary artery disease. Curr Opin Lipidol 12:383–389. doi:10.1097/00041433-200108000-00003

    Article  CAS  PubMed  Google Scholar 

  • Kirkland TN, Finley F, Leturcq D, Moriarty A, Lee JD, Ulevitch RJ, Tobias PS (1993) Analysis of lipopolysaccharide binding by CD14. J Biol Chem 268:24818–24823

    CAS  PubMed  Google Scholar 

  • Kohn G, Wong HR, Bshesh K, Zhao B, Vasi N, Denenberg A, Morris C, Stark J, Shanley TP (2002) Heat shock inhibits TNF-induced ICAM-1 expression in human endothelial cells via I kappa kinase inhibition. Shock 17:91–97. doi:10.1097/00024382-200202000-00002

    Article  PubMed  Google Scholar 

  • Krieglstein CF, Granger DN (2001) Adhesion molecules and their role in vascular disease. Am J Hypertension 14:44S–54S. doi:10.1016/S0895-7061(01)02069-6

    Article  CAS  Google Scholar 

  • Lasunskaia EB, Fridlianskaia II, Guzhova IV, Bozhkov VM, Margulis BA (1997) Accumulation of major stress protein 70 kDa protects myeloid and lymphoid cells from death by apoptosis. Apoptosis 2:156–163. doi:10.1023/A:1026460330596

    Article  CAS  PubMed  Google Scholar 

  • Laurat E, Poirier B, Tupin E, Caligiuri G, Hansson GK, Bariéty J, Nicoletti A (2001) In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 104:197–202

    CAS  PubMed  Google Scholar 

  • Lewthwaite J, Owen N, Coates A, Henderson B, Steptoe A (2002) Circulating human heat shock protein 60 in the plasma of British civil servants. Circulation 106:196–201. doi:10.1161/01.CIR.0000021121.26290.2C

    Article  CAS  PubMed  Google Scholar 

  • Li D, Mehta JL (2000) Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implication in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol 20:1116–1122

    CAS  PubMed  Google Scholar 

  • Li D, Liu L, Chen H, Sawamura T, Mehta JL (2003) LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 23:816–821. doi:10.1161/01.ATV.0000066685.13434.FA

    Article  CAS  PubMed  Google Scholar 

  • Liao D-F, Jin Z-G, Baas AS, Daum G, Gygi SP, Aebersold R, Berk BC (2000) Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem 275:189–196. doi:10.1074/jbc.275.1.189

    Article  CAS  PubMed  Google Scholar 

  • Libby P (1995) Molecular bases of the acute coronary syndromes. Circulation 91:2844–2850

    CAS  PubMed  Google Scholar 

  • Lienenlüke B, Germann T, Kroczek RA, Hecker M (2000) CD154 stimulation of interleukin-12 synthesis in human endothelial cells. Eur J Immunol 30:2864–2870. doi:10.1002/1521-4141(200010)30:10<2864::AID-IMMU2864>3.0.CO;2-W

    Article  PubMed  Google Scholar 

  • Lumsden AB, Chen C, Hughes JD, Kelly AB, Hanson SR, Harker LA (1997) Anti-VLA-4 antibody reduces intimal hyperplasia in the endarterectomized carotid artery in nonhuman primates. J Vasc Surg 26:87–93. doi:10.1016/S0741-5214(97)70151-4

    Article  CAS  PubMed  Google Scholar 

  • Mach F, Schonbeck U, Libby P (1998a) CD40 signaling in vascular cells: a key role in atherosclerosis? Atherosclerosis 137(Suppl):S89–S95. doi:10.1016/S0021-9150(97)00309-2

    Article  CAS  PubMed  Google Scholar 

  • Mach F, Schönbeck U, Sukhova GK, Atkinson E, Libby P (1998b) Reduction of atherosclerosis in mice by inhibition of CD40 signaling. Nature 394:200–203. doi:10.1038/28204

    Article  CAS  PubMed  Google Scholar 

  • MacLellan WR, Schneider MD (1997) Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 81:137–144

    CAS  PubMed  Google Scholar 

  • Mallat Z, Ait-Oufella H, Tedgui A (2007) Regulatory T-cell immunity in atherosclerosis. Trends Cardiovasc Med 17:113–118. doi:10.1016/j.tcm.2007.03.001

    Article  CAS  PubMed  Google Scholar 

  • Mann JM, Davies MJ (1996) Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries. Circulation 94:928–931

    CAS  PubMed  Google Scholar 

  • Martin-Ventura JL, Leclercq A, Blanco-Colio LM, Egido J, Rossignol P, Meilhac O, Michel JB (2007) Low plasma levels of HSP70 in patients with carotid atherosclerosis are associated with increased levels of proteolytic markers of neutrophil activation. Atherosclerosis 194:334–341. doi:10.1016/j.atherosclerosis.2006.10.030

    Article  CAS  PubMed  Google Scholar 

  • Masaki T (2003) Endothelial dysfunction and LOX-1: forty years from muscle to endothelium. Circ Res 92:819–820. doi:10.1161/01.RES.0000071523.67730.5F

    Article  CAS  PubMed  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327

    CAS  PubMed  Google Scholar 

  • Nakabe N, Kokura S, Shimozawa M, Katada K, Sakamoto N, Ishikawa T, Handa O, Takagi T, Naito Y, Yoshida N, Yoshikawa T (2007) Hyperthermia attenuates TNF-α-induced up regulation of endothelial cell adhesion molecules in human arterial endothelial cells. Int J Hyperthermia 23:217–224. doi:10.1080/02656730601143295

    Article  CAS  PubMed  Google Scholar 

  • Nakai K, Itoh C, Kawazoe K, Miura Y, Sotoyanagi H, Hotta K, Itoh T, Kamata J, Hiramori K (1995) Concentration of soluble vascular cell adhesion molecule-1 (VCAM-1) correlated with expression of VCAM-1 mRNA in the human atherosclerotic aorta. Coron Artery Dis 6:497–502

    CAS  PubMed  Google Scholar 

  • Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18:842–851

    CAS  PubMed  Google Scholar 

  • Njemini R, Lambert M, Demanet C, Mets T (2003) Elevated serum heat-shock protein 70 levels in patients with acute infection: use of an optimized enzyme-linked immunosorbent assay. Scand J Immunol 58:664–669. doi:10.1111/j.1365-3083.2003.01341.x

    Article  CAS  PubMed  Google Scholar 

  • Njemini R, Demanet C, Mets T (2004) Inflammatory status as an important determinant of heat shock protein 70 serum concentrations during aging. Biogerontology 5:31–38. doi:10.1023/B:BGEN.0000017684.15626.29

    Article  CAS  PubMed  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing “heat shock” proteins. J Cell Sci 115:2809–2816

    CAS  PubMed  Google Scholar 

  • O'Brien KD, Allen MD, McDonald TO, Chait A, Harlan JM, Fishbein D, McCarty J, Ferguson M, Hudkins K, Benjamin CD et al (1993) Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest 92:945–951. doi:10.1172/JCI116670

    Article  PubMed  Google Scholar 

  • Oguchi S, Dimayuga P, Zhu J, Chyu KY, Yano J, Shah PK, Nilsson J, Cercek B (2000) Monoclonal antibody against vascular cell adhesion molecule-1 inhibits neointimal formation after periadventitial carotid artery injury in genetically hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 20:1729–1736

    CAS  PubMed  Google Scholar 

  • Pockley AG, Shepherd J, Corton J (1998) Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest 27:367–377. doi:10.3109/08820139809022710

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Bulmer J, Hanks BM, Wright BH (1999) Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones 4:29–35. doi:10.1379/1466-1268(1999)004<0029:IOHHSP>2.3.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Wu R, Lemne C, Kiessling R, de Faire U, Frostegård J (2000) Circulating heat shock protein 60 is associated with early cardiovascular disease. Hypertension 36:303–307

    CAS  PubMed  Google Scholar 

  • Pockley AG, de Faire U, Kiessling R, Lemne C, Thulin T, Frostegård J (2002) Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J Hypertens 20:1815–1820. doi:10.1097/00004872-200209000-00027

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Georgiades A, Thulin T, de Faire U, Frostegård J (2003) Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42:235–238. doi:10.1161/01.HYP.0000086522.13672.23

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228:111–133

    CAS  Google Scholar 

  • Price DT, Loscalzo J (1999) Cellular adhesion molecules and atherogenesis. Am J Med 107:85–97. doi:10.1016/S0002-9343(99)00153-9

    Article  CAS  PubMed  Google Scholar 

  • Rea IM, McNerlan S, Pockley AG (2001) Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp Gerontology 36:341–352. doi:10.1016/S0531-5565(00)00215-1

    Article  CAS  Google Scholar 

  • Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170. doi:10.1006/excr.1996.0070

    Article  CAS  PubMed  Google Scholar 

  • Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T, Masaki T (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature 386:73–77. doi:10.1038/386073a0

    Article  CAS  PubMed  Google Scholar 

  • Simon MM, Reikerstorfer A, Schwarz A, Krone C, Luger TA, Jäättelä M, Schwarz T (1995) Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J Clin Invest 95:926–933. doi:10.1172/JCI117800

    Article  CAS  PubMed  Google Scholar 

  • Stoneman VE, Bennett MR (2004) Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci 107:343–354. doi:10.1042/CS20040086

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Kimura Y, Mitani A, Yamamoto G, Nishimura H, Spallek R, Singh M, Noguchi T, Yoshikai Y (1999) Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J Immunol 163:5560–5565

    CAS  PubMed  Google Scholar 

  • Thériault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK (2005) Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 579:1951–1960. doi:10.1016/j.febslet.2005.02.046

    Article  PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112. doi:10.1074/jbc.M111204200

    Article  CAS  PubMed  Google Scholar 

  • Valgimigli M, Merli E, Malagutti P, Soukhomovskaia O, Cicchitelli G, Macri G, Ferrari R (2003) Endothelial dysfunction in acute and chronic coronary syndromes: evidence for a pathogenetic role of oxidative stress. Arch Biochem Biophys 420:255–261. doi:10.1016/j.abb.2003.07.006

    Article  CAS  PubMed  Google Scholar 

  • Viles-Gonzales JF, Fuster V, Badimin JJ (2004) Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur Heart J 25:1197–1207. doi:10.1016/j.ehj.2004.03.011

    Article  CAS  Google Scholar 

  • Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, Vekshtein VI, Selwyn AP, Ganz P (1990) Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81:491–497

    CAS  PubMed  Google Scholar 

  • Wang Y, Kelly CG, Karttunen T, Whittall T, Lehner PJ, Duncan L, MacAry P, Younson JS, Singh M, Oehlmann W, Cheng G, Bergmeier L, Lehner T (2001) CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15:971–983. doi:10.1016/S1074-7613(01)00242-4

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Grammatikakis N, Siganou A, Calderwood SK (2003) Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14-3-3 epsilon binding, and cytoplasmic sequestration of heat shock factor 1. Mol Cell Biol 23:6013–6026. doi:10.1128/MCB.23.17.6013-6026.2003

    Article  CAS  PubMed  Google Scholar 

  • Welch WJ, Suhan JP (1986) Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J Cell Biol 103:2035–2052. doi:10.1083/jcb.103.5.2035

    Article  CAS  PubMed  Google Scholar 

  • Wendling U, Paul L, van der Zee R, Prakken B, Singh M, van Eden W (2000) A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol 164:2711–2717

    CAS  PubMed  Google Scholar 

  • Wick MC, Mayerl C, Backovic A, van der Zee R, Jaschke W, Dietrich H, Wick G (2008) In vivo imaging of the effect of LPS on arterial endothelial cells: molecular imaging of heat shock protein 60 expression. Cell Stress Chaperones 13:275–285. doi:10.1007/s12192-008-0044-2

    Article  CAS  PubMed  Google Scholar 

  • Wieten L, Berlo SE, Ten Brink CB, van Kooten PJ, Singh M, van der Zee R, Glant TT, Broere F, van Eden W (2009) IL-10 is critically involved in mycobacterial HSP70 induced suppression of proteoglycan-induced arthritis. PLoS ONE 4:e4186. doi:10.1371/journal.pone.0004186

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433. doi:10.1126/science.1698311

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Chen C, Stevenson MA, Hume DA, Auron PE, Calderwood SK (2002) NF-IL6 and HSF1 have mutually antagonistic effects on transcription in monocytic cells. Biochem Biophys Res Commun 291:1071–1080. doi:10.1006/bbrc.2002.6562

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Zhong R, Chen C, Calderwood SK (2003) Heat shock factor 1 contains two functional domains that mediate transcriptional repression of the c-fos and c-fms genes. J Biol Chem 278:4687–4698. doi:10.1074/jbc.M210189200

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Schett G, Perschinka H, Mayr M, Egger G, Oberhollenzer F, Willeit J, Kiechl S, Wick G (2000) Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102:14–20

    CAS  PubMed  Google Scholar 

  • Yellin MJ, Brett J, Baum D, Matsushima A, Szabolcs M, Stern D, Chess L (1995) Functional interactions of T cells with endothelial cells: the role of CD40L-CD40-mediated signals. J Exp Med 182:1857–1864. doi:10.1084/jem.182.6.1857

    Article  CAS  PubMed  Google Scholar 

  • Zal B, Kaski JC, Arno G, Akiyu JP, Xu Q, Cole D, Whelan M, Russell N, Madrigal JA, Dodi IA, Baboonian C (2004) Heat-shock protein 60-reactive CD4+CD28null T cells in patients with acute coronary syndromes. Circulation 109:1230–1235. doi:10.1161/01.CIR.0000118476.29352.2A

    Article  CAS  PubMed  Google Scholar 

  • Zanin-Zhorov A, Cahalon L, Tal G, Margalit R, Lider O, Cohen IR (2006) Heat shock protein 60 enhances CD4+CD25+ regulatory T cell function via innate TLR2 signaling. J Clin Invest 116:2022–2032. doi:10.1172/JCI28423

    Article  CAS  PubMed  Google Scholar 

  • Zeuke S, Ulmer AJ, Kusumoto S, Katus HA, Heine H (2002) TLR4-mediated inflammatory activation of human coronary artery endothelial cells by LPS. Cardiovasc Res 56:126–134. doi:10.1016/S0008-6363(02)00512-6

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Tang D, Lechpammer S, Hoffman A, Asea A, Stevenson MA, Calderwood SK (2002) Double-stranded RNA-dependent protein kinase (pkr) is essential for thermotolerance, accumulation of HSP70, and stabilization of ARE-containing HSP70 mRNA during stress. J Biol Chem 277:44539–44547. doi:10.1074/jbc.M208408200

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Caligiuri G, Hamsten A, Lefvert AK, Hansson GK (2001) LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler Thromb Vasc Biol 21:108–114. doi:10.1161/hq0901.096582

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Quyyumi AA, Wu H, Csako G, Rott D, Zalles-Ganley A, Ogunmakinwa J, Halcox J, Epstein SE (2003) Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 23:1055–1059. doi:10.1161/01.ATV.0000074899.60898.FD

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mathias Gehrmann (Technische Universität München) for performing the fluorescent microscopy. We also thank Professor Nicola J. Brown (University of Sheffield) for providing primary human dermal microvascular endothelial cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Graham Pockley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pockley, A.G., Calderwood, S.K. & Multhoff, G. The atheroprotective properties of Hsp70: a role for Hsp70-endothelial interactions?. Cell Stress and Chaperones 14, 545–553 (2009). https://doi.org/10.1007/s12192-009-0113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-009-0113-1

Keywords

Navigation