Skip to main content
Log in

The effect of 15 consecutive days of heat–exercise acclimation on heat shock protein 70

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The purpose of this study was to investigate the alterations in serum heat shock protein (Hsp) 70 levels during a 15-consecutive-day intermittent heat–exercise protocol in a 29-year-old male ultra marathon runner. Heat acclimation, for the purpose of physical activities in elevated ambient temperatures, has numerous physiological benefits including mechanisms such as improved cardiac output, increased plasma volume and a decreased core temperature (T c). In addition to the central adaptations, the role of Hsp during heat acclimation has received an increasing amount of attention. The acclimation protocol applied was designed to correspond with the athlete’s tapering period for the 2007 Marathon Des Sables. The subject (VO2max = 50.7 ml·kg−1·min−1, peak power output [PPO] = 376 W) cycled daily for 90 min at a workload corresponding to 50% of VO2max in a temperature-controlled room (average WBGT = 31.9 ± 0.9°C). Venous blood was sampled before and after each session for measurement of serum osmolality and serum Hsp70. In addition, T c, heart rate (HR) and power output (PO) was measured throughout the 90 min to ensure that heat acclimation was achieved during the 15-day period. The results show that the subject was successfully heat acclimated as seen by the lowered HR at rest and during exercise, decreased resting and exercising T c and an increased PO. The heat exercise resulted in an initial increase in Hsp70 concentrations, known as thermotolerance, and the increase in Hsp70 after exercise was inversely correlated to the resting values of Hsp70 (Spearman’s rank correlation = −0.81, p < 0.01). Furthermore, the 15-day heat–exercise protocol also increased the basal levels of Hsp70, a response different from that of thermotolerance. This is, as far as we are aware, the first report showing Hsp70 levels during consecutive days of intermittent heat exposure giving rise to heat acclimation. In conclusion, a relatively longer heat acclimation protocol is suggested to obtain maximum benefit of heat acclimation inclusive of both cellular and systemic adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arieli Y, Eynan M, Gancz H, Arieli R, Kashi Y (2003) Heat acclimation prolongs the time to central nervous system oxygen toxicity in the rat. Possible involvement of HSP72. Brain Res 962:15–20

    Article  PubMed  CAS  Google Scholar 

  • Armstrong LE, Maresh CM (1991) The induction and decay of heat acclimatisation in trained athletes. Sports Med 12:302–312

    Article  PubMed  CAS  Google Scholar 

  • Armstrong LE, Hubbard RW, DeLuca JP, Christensen EL (1987) Heat acclimatization during summer running in the northeastern United States. Med Sci Sports Exerc 19:131–136

    PubMed  CAS  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    Article  PubMed  CAS  Google Scholar 

  • Banfi G, Dolci A, Verna R, Corsi MM (2004) Exercise raises serum heat-shock protein 70 (Hsp70) levels. Clin Chem Lab Med 42:1445–1446

    Article  PubMed  CAS  Google Scholar 

  • Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854

    Article  PubMed  CAS  Google Scholar 

  • Boshoff T, Lombard F, Eiselen R, Bornman JJ, Bachelet M, Polla BS, Bornman L (2000) Differential basal synthesis of Hsp70/Hsc70 contributes to interindividual variation in Hsp70/Hsc70 inducibility. Cell Mol Life Sci 57:1317–1325

    Article  PubMed  CAS  Google Scholar 

  • Broquet AH, Thomas G, Masliah J, Trugnan G, Bachelet M (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278:21601–21606

    Article  PubMed  CAS  Google Scholar 

  • Buono MJ, Heaney JH, Canine KM (1998) Acclimation to humid heat lowers resting core temperature. Am J Physiol 274:R1295–R1299

    PubMed  CAS  Google Scholar 

  • Febbraio MA, Ott P, Nielsen HB, Steensberg A, Keller C, Krustrup P, Secher NH, Pedersen BK (2002) Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol 544:957–962

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach E, Passek F, Niess AM, Pohla H, Weinstock C, Dickhuth HH, Northoff H (2000) HSP expression in human leukocytes is modulated by endurance exercise. Med Sci Sports Exerc 32:592–600

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach E, Niess AM, Veith R, Dickhuth HH, Northoff H (2001) Changes of HSP72-expression in leukocytes are associated with adaptation to exercise under conditions of high environmental temperature. J Leukoc Biol 69:747–754

    PubMed  CAS  Google Scholar 

  • Fehrenbach E, Niess AM, Voelker K, Northoff H, Mooren FC (2005) Exercise intensity and duration affect blood soluble HSP72. Int J Sports Med 26:552–557

    Article  PubMed  CAS  Google Scholar 

  • Fox RH, Goldsmith R, Kidd DJ, Lewis HE (1963) Blood flow and other thermoregulatory changes with acclimatization to heat. J Physiol 166:548–562

    PubMed  CAS  Google Scholar 

  • Gehring WJ, Wehner R (1995) Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc Natl Acad Sci U S A 92:2994–2998

    Article  PubMed  CAS  Google Scholar 

  • Gjovaag TF, Dahl HA (2006) Effect of training and detraining on the expression of heat shock proteins in m. triceps brachii of untrained males and females. Eur J Appl Physiol 98:310–322

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86:1032–1039

    PubMed  CAS  Google Scholar 

  • Hargreaves M, Febbraio M (1998) Limits to exercise performance in the heat. Int J Sports Med 19(Suppl 2):S115–S116

    Article  PubMed  Google Scholar 

  • Horowitz M (1998) Do cellular heat acclimation responses modulate central thermoregulatory activity. News Physiol Sci 13:218–225

    PubMed  Google Scholar 

  • Horowitz M (2002) From molecular and cellular to integrative heat defense during exposure to chronic heat. Comp Biochem Physiol Part A Mol Integr Physiol 131:475–483

    Article  Google Scholar 

  • Horowitz M, Maloyan A, Shlaier J (1997) HSP 70 kDa dynamics in animals undergoing heat stress superimposed on heat acclimation. Ann N Y Acad Sci 813:617–619

    Article  PubMed  CAS  Google Scholar 

  • Houmard JA, Costill DL, Davis JA, Mitchell JB, Pascoe DD, Robergs RA (1990) The influence of exercise intensity on heat acclimation in trained subjects. Med Sci Sports Exerc 22:615–620

    Article  PubMed  CAS  Google Scholar 

  • Hunter-Lavin C, Davies EL, Bacelar MM, Marshall MJ, Andrew SM, Williams JH (2004) Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun 324:511–517

    Article  PubMed  CAS  Google Scholar 

  • Kinugasa T, Cerin E, Hooper S (2004) Single-subject research designs and data analyses for assessing elite athletes’ conditioning. Sports Med 34:1035–1050

    Article  PubMed  Google Scholar 

  • Lancaster GI, Moller K, Nielsen B, Secher NH, Febbraio MA, Nybo L (2004) Exercise induces the release of heat shock protein 72 from the human brain in vivo. Cell Stress Chaperones 9:276–280

    Article  PubMed  CAS  Google Scholar 

  • Lovell R, Madden L, Carroll S, McNaughton L (2007) The time-profile of the PBMC HSP70 response to in vitro heat shock appears temperature-dependent. Amino Acids 33:137–144

    Article  PubMed  CAS  Google Scholar 

  • Maloyan A, Palmon A, Horowitz M (1999) Heat acclimation increases the basal HSP72 level and alters its production dynamics during heat stress. Am J Physiol 276:R1506–R1515

    PubMed  CAS  Google Scholar 

  • Marshall HC, Ferguson RA, Nimmo MA (2006) Human resting extracellular heat shock protein 72 concentration decreases during the initial adaptation to exercise in a hot, humid environment. Cell Stress Chaperones 11:129–134

    Article  PubMed  CAS  Google Scholar 

  • Montain SJ, Sawka MN, Cadarette BS, Quigley MD, McKay JM (1994) Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing, and climate. J Appl Physiol 77:216–222

    PubMed  CAS  Google Scholar 

  • Morimoto RI, Kline MP, Bimston DN, Cotto JJ (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32:17–29

    PubMed  CAS  Google Scholar 

  • Moseley PL (1997) Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 83:1413–1417

    PubMed  CAS  Google Scholar 

  • Nielsen B, Hales JR, Strange S, Christensen NJ, Warberg J, Saltin B (1993) Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 460:467–485

    PubMed  CAS  Google Scholar 

  • Patterson MJ, Stocks JM, Taylor NA (2004) Sustained and generalized extracellular fluid expansion following heat acclimation. J Physiol 559:327–334

    Article  PubMed  CAS  Google Scholar 

  • Reilly T, Drust B, Gregson W (2006) Thermoregulation in elite athletes. Curr Opin Clin Nutr Metab Care 9:666–671

    Article  PubMed  Google Scholar 

  • Riabowol KT, Mizzen LA, Welch WJ (1988) Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science 242:433–436

    Article  PubMed  CAS  Google Scholar 

  • Saat M, Sirisinghe RG, Singh R, Tochihara Y (2005) Effects of short-term exercise in the heat on thermoregulation, blood parameters, sweat secretion and sweat composition of tropic-dwelling subjects. J Physiol Anthropol Appl Hum Sci 24:541–549

    Article  Google Scholar 

  • Shvartz E, Saar E, Meyerstein N, Benor D (1973) A comparison of three methods of acclimatization to dry heat. J Appl Physiol 34:214–219

    PubMed  CAS  Google Scholar 

  • Shvartz E, Bhattacharya A, Sperinde SJ, Brock PJ, Sciaraffa D, Van Beaumont W (1979) Sweating responses during heat acclimation and moderate conditioning. J Appl Physiol 46:675–680

    PubMed  CAS  Google Scholar 

  • Taylor NA (2006) Challenges to temperature regulation when working in hot environments. Ind Health 44:331–344

    Article  PubMed  Google Scholar 

  • Thomas MM, Cheung SS, Elder GC, Sleivert GG (2006) Voluntary muscle activation is impaired by core temperature rather than local muscle temperature. J Appl Physiol 100:1361–1369

    Article  PubMed  Google Scholar 

  • Voltaire B, Galy O, Coste O, Recinais S, Callis A, Blonc S, Hertogh C, Hue O (2002) Effect of fourteen days of acclimatization on athletic performance in tropical climate. Can J Appl Physiol 27:551–562

    PubMed  Google Scholar 

  • Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6:386–393

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ, Feramisco JR (1984) Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem 259:4501–4513

    PubMed  CAS  Google Scholar 

  • Whitham M, Fortes MB (2006) Effect of blood handling on extracellular Hsp72 concentration after high-intensity exercise in humans. Cell Stress Chaperones 11:304–308

    Article  PubMed  CAS  Google Scholar 

  • Whitham M, Walker GJ, Bishop NC (2006) Effect of caffeine supplementation on the extracellular heat shock protein 72 response to exercise. J Appl Physiol 101:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Wyndham CH, Rogers GG, Senay LC, Mitchell D (1976) Acclimization in a hot, humid environment: cardiovascular adjustments. J Appl Physiol 40:779–785

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank our subject, Paul Barett, for his participation and David Hildreth for his assistance conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie E. Sandström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandström, M.E., Siegler, J.C., Lovell, R.J. et al. The effect of 15 consecutive days of heat–exercise acclimation on heat shock protein 70. Cell Stress and Chaperones 13, 169–175 (2008). https://doi.org/10.1007/s12192-008-0022-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0022-8

Keywords

Navigation