Skip to main content
Log in

Visco-elastic dampers in structural buildings and numerical solution with spline collocation methods

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

The dynamic system of a structure utilized with visco-elastic dampers can be modeled by fractional differential equations. All the resulted systems of fractional differential equations can be represented in a state space and can be transformed into a system of multi-term fractional differential equations of order 1. Considering the presence of indeterministic exogenous force like earthquake we need powerful, convergent and reliable numerical methods to simulate the response of this dynamical systems. Therefore, spline collocations method has been proposed and studied for solving system of multi-term fractional differential equations of order 1. A rigorous mathematical analysis is provided to show the efficiency and effectiveness of the method. To this end, we apply a functional analysis framework to obtain convergence and superconvergence properties of the proposed methods on the graded mesh. Some numerical experiments are provided to confirm the theoretical results. Finally, this method is used for simulating the response of a 4-story building under El Centro earthquake excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Losanno, D., Zinno, S., Serino, G., Londono, J.M.: A design procedure in state-space representation for seismic retrofit of existing buildings with viscous dampers. In: J. Kruis, Y., Tsompanakis, B.H.V., Topping, (eds.) Proceedings of the 15th International Conference on Civil, Structural and Environmental Engineering Computing. Civil-Comp Press, Stirlingshire, UK, Paper 117 (2015)

  2. Losanno, D., Spizzuoco, M., Serino, G.: Design and retrofit of multi-story frames with elastic-deformable viscous damping braces. J. Earthq. Eng. 23, 1441 (2017)

    Google Scholar 

  3. Losanno, D., Londono, J.M., Zinno, S., Serino, G.: Effective damping and frequencies of viscous damper braced structures considering the supports flexibility. Comput. Struct. 207, 121 (2018)

    Google Scholar 

  4. Losanno, D., Spizzuoco, M., Serino, G.: An optimal design procedure for a simple frame equipped with elastic-deformable dissipative braces. Eng. Struct. 101, 677–697 (2015)

    Google Scholar 

  5. Gupta, N., Mutsuyoshi, H.: Analysis and design of viscoelastic damper for earthquake-resistent structure. In: Eleventh World Conference on Earthquake Engineering, vol. 1536 (1996)

  6. Park, S.W.: Analytical modeling of viscoelastic dampers for structural and vibration control. Int. J. Solids Struct. 38, 8065–92 (2001)

    MATH  Google Scholar 

  7. Escobedo, T.J., Ricles, J.M.: The fractional order elastic-viscoelastic equations of motion: formulation and solution methods. J. Intel. Mater. Syst. Struct. 9, 489–502 (1998)

    Google Scholar 

  8. Kumar, A.M.S., Panda, S., Chakraborty, D.: Piezoviscoelastically damped nonlinear frequency response of functionally graded plates with a heated plate-surface. J. Vib. Control 22, 320–343 (2016)

    MathSciNet  Google Scholar 

  9. Pawlak, Z., Lewandowski, R.: The continuation method for the eigenvalue problem of structures with viscoelastic dampers. Comput. Struct. 125, 53–61 (2013)

    Google Scholar 

  10. Gemant, A.: A method of analyzing experimental results obtained from elasto-viscous bodies. Physics 7, 311–317 (1936)

    Google Scholar 

  11. Bagley, R.L., Torvi, P.J.K.: On the fractional calculus model of visco-elastic behavior. J. Rheol. 30, 133–155 (1986)

    Google Scholar 

  12. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific, New Jersey (2012)

    MATH  Google Scholar 

  13. Diethelm, K.: The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer, Berlin (2010)

    MATH  Google Scholar 

  14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science Limited, Berlin (2006)

    MATH  Google Scholar 

  15. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  16. Shiri, B., Baleanu, D.: System of fractional differential algebraic equations with applications. Chaos Solitons Fractals 120, 203 (2019)

    MathSciNet  Google Scholar 

  17. Baleanu, D., Shiri, B., Srivastava, H.M., Al Qurashi, M.: A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel. Adv. Differ. Equ. 2018, 353 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, Cambrige (2004)

    MATH  Google Scholar 

  19. Baleanu, D., Shiri, B.: Collocation methods for fractional differential equations involving non-singular kernel. Chaos Solitons Fract. 116, 136–45 (2018)

    MathSciNet  Google Scholar 

  20. Shiri, B.: Numerical solution of higher index nonlinear integral algebraic equations of Hessenberg type using discontinuous collocation methods. Math. Model. Anal. 19, 99–117 (2014)

    MathSciNet  Google Scholar 

  21. Karamali, G., Shiri, B.: Numerical solution of higher index DAEs using their IAE’s structure: trajectory-prescribed path control problem and simple pendulum. Casp. J. Math. Sci. 7, 1–15 (2018)

    Google Scholar 

  22. Karamali, G., Shiri, B., Kashfi, M.: Convergence analysis of piecewise polynomial collocation methods for system of weakly singular volterra integral equations of the first kind. Appl. Comput. Math. 7, 1–11 (2017)

    Google Scholar 

  23. Pedas, A., Tamme, E.: On the convergence of spline collocation methods for solving fractional differential equations. J. Comput. Appl. Math. 235, 3502–14 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Pedas, A., Tamme, E.: Spline collocation methods for linear multi-term fractional differential equations. J. Comput. Appl. Math. 236, 167–76 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Pedas, A., Tamme, E., Vikerpuur, M.: Piecewise Polynomial Collocation for a Class of Fractional Itegro-Differential Equations, in Integral Methods in Science and Engineering, pp. 471–482. Birkhauser, Cham (2015)

    MATH  Google Scholar 

  26. Pedas, A., Tamme, E.: Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. Comput. Appl. Math. 255, 216–30 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Chang and Singh: Seismic analysis of structures with a fractional derivative model of visco-elastic dampers. Earthq. Eng. Eng. Vib. 1, 251–60 (2002)

    Google Scholar 

  28. Lewandowski, R., Pawlak, Z.: Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractionalderivatives. J. Sound Vib. 330, 923–36 (2011)

    Google Scholar 

  29. Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Daftardar-Gejji, V., Babakhani, A.: Analysis of a system of fractional differential equations. J. Math. Anal. Appl. 293, 511–522 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Daftardar-Gejji, V.: Positive solutions of a system of non-autonomous fractional differential equations. J. Math. Anal. Appl. 302, 56–64 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Debbouche, A., Nieto, J.J.: Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls. Appl. Math. Comput. 245, 74–85 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Zhou, Y.: Existence and uniqueness of solutions for a system of fractional differential equations. Fract. Calc. Appl. Anal. 12, 195–204 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Daftardar-Gejji, V., Jafari, H.: An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 316, 753–763 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Jafari, H., Daftardar-Gejji, V.: Solving a system of nonlinear fractional differential equations using Adomian decomposition. J. Comput. Appl. Math. 196, 644–51 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Jafari, H., Seifi, S.: Solving a system of nonlinear fractional partial differential equations using homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 1962–1969 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. J. Appl. Mech. 22(1), 64–69 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Khalil, H., Khan, R.A.: The use of Jacobi polynomials in the numerical solution of coupled system of fractional differential equations. Int. J. Comput. Math. 92, 1452–1472 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Colinas-Armijo, N., Di Paola, M., Pinnola, F.P.: Fractional characteristic times and dissipated energy in fractional linear viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 37, 14–30 (2016)

    MathSciNet  Google Scholar 

  41. Di Paola, M., Pinnola, F.P., Zingales, M.: A discrete mechanical model of fractional hereditary materials. Meccanica 48, 1573–86 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Dadkhah. E., Gaffarzadeh, H., Shiri, B.: Design of visco-elastic dampers for structures based on fractional differential equations. In: The First International Conference on Boundary Value Problems and Applications (2018)

  43. Lewandowski, R., Chorazyczewski, B.: Identification of the parameters of the Kelvin Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput. Struct. 88, 1–17 (2010)

    Google Scholar 

  44. Litewka, P., Lewandowski, R.: Steady-state non-linear vibrations of plates using Zener material model with fractional derivative. Comput. Mech. 60, 333–54 (2017)

    MathSciNet  MATH  Google Scholar 

  45. El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A.: Numerical solution for multi-term fractional (arbitrary) orders differential equations. Comput. Appl. Math. 23, 33–54 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Kolk, M., Pedas, A., Tamme, E.: Modified spline collocation for linear fractional differential equations. J. Comput. Appl. Math. 283, 28–40 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Brunner, H., Pedas, A., Vainikko, G.: Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 39, 957–982 (2001)

    MathSciNet  MATH  Google Scholar 

  48. Atkinson, K.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  49. Atkinson, K., Han, W.: Theoretical Numerical Analysis. Springer, Berlin (2005)

    MATH  Google Scholar 

  50. Torvik, P.J., Bagley, L.R.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51, 294–298 (1984)

    MATH  Google Scholar 

  51. Mdallal Al, Q.M., Syam, M.I., Anwar, M.N.: A collocation-shooting method for solving fractional boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 15, 3814–3822 (2010)

    MathSciNet  MATH  Google Scholar 

  52. Çenesiz, Y., Keskin, Y., Kurnaz, A.: The solution of the Bagley–Torvik equation with the generalized Taylor collocation method. J. Frankl. Inst. 347, 452–466 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Diethelm, K., Ford, J.: Numerical solution of the Bagley–Torvik equation. BIT Numeri. Math. 42, 490–507 (2002)

    MathSciNet  MATH  Google Scholar 

  54. Ray, S.S., Bera, R.K.: Analytical solution of the Bagley Torvik equation by Adomian decomposition method. Appl. Math. Comput. 168, 398–410 (2005)

    MathSciNet  MATH  Google Scholar 

  55. Wang, Z.H., Wang, X.: General solution of the Bagley–Torvik equation with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simul. 15, 1279–1285 (2010)

    MathSciNet  MATH  Google Scholar 

  56. Yüzbaşi, Ş.: Numerical solution of the Bagley–Torvik equation by the Bessel collocation method. Math. Methods Appl. Sci. 36, 300–312 (2013)

    MathSciNet  MATH  Google Scholar 

  57. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17, 238–246 (1980)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Shiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadkhah, E., Shiri, B., Ghaffarzadeh, H. et al. Visco-elastic dampers in structural buildings and numerical solution with spline collocation methods. J. Appl. Math. Comput. 63, 29–57 (2020). https://doi.org/10.1007/s12190-019-01307-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01307-5

Keywords

Mathematics Subject Classification

Navigation