Skip to main content

Advertisement

Log in

Analysis of a delayed HIV/AIDS epidemic model with saturation incidence

  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a delayed HIV/AIDS epidemic model with saturation incidence is proposed and analyzed. The equilibria and their stability are investigated. The model exhibits two equilibria, namely, the disease-free equilibrium and the endemic equilibrium. It is found that if the threshold R 0<1, then the disease-free equilibrium is globally asymptotically stable, and if the threshold R 0>1, the system is permanent and the endemic equilibrium is asymptotically stable under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. UNAIDS: Report on the Global AIDS Epidemic (2005). http://www.unaids.org

  2. Anderson, R.M., Medly, G.F., May, R.M., Johnson, A.M.: A preliminary study of the transmission dynamics of the Human Immunodeficiency Virus (HIV), the causative agent of AIDS. IMA J. Math. Appl. Med. Biol. 3, 229–263 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson, R.M.: The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS. J. AIDS 1, 241–256 (1988)

    Google Scholar 

  4. May, R.M., Anderson, R.M.: Transmission dynamics of HIV infection. Nature 326, 137–142 (1987)

    Article  Google Scholar 

  5. Arazoza, H.D., Lounes, R.: A nonlinear model for a sexually transmitted disease with contact tracing. IMA J. Math. Appl. Med. Biol. 19, 221–234 (2002)

    Article  MATH  Google Scholar 

  6. Busenberg, K., Cooke, K., Ying-Hen, H.: A model for HIV in Asia. Math. Biosci. 128, 185–210 (1995)

    Article  MATH  Google Scholar 

  7. Naresh, R., Omar, S., Tripathi, A.: Modelling and analysis of HIV/AIDS in a variable size population. Far East J. Appl. Math. 18, 345–360 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Huang, X., Villasana, M.: An extension of the Kermack-Mackendrick model for AIDS epidemic. J. Franklin Inst. 342, 341–351 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cooke, K.L., van den Driessche, P.: Analysis of an SEIRS epidemic model with two delays. J. Math. Biol. 35, 240–260 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Beretta, E., Takeuchi, Y.: Global stability of an SIR epidemic model with time delays. J. Math. Biol. 33, 250–260 (1995)

    MATH  MathSciNet  Google Scholar 

  12. Culshaw, R.V., Ruan, S., Webb, G.: A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay. J. Math. Biol. 46, 425–444 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Beretta, E., Kuang, Y.: Modelling and analysis of a marine bacteriophage infection with latency period. Nonlinear Anal. 2, 35–74 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ma, W., Song, M., Takeuchi, Y.: Global stability of an SIR epidemic model with time delay. Appl. Math. Lett. 17, 1141–1145 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Levin, S.A., Hallam, T.G., Gross, L.J.: Applied Mathematical Ecology. Springer, Berlin (1989)

    MATH  Google Scholar 

  16. Castillo-Chavez, C., Hethcote, H.W., Andreasen, V., Levin, S.A., Liu, W.M.: Epidemiological models with age structure, proportionate mixing and cross-immunity. J. Math. Biol. 27, 233–258 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Anderson, R.M., May, R.M.: Population biology of infectious disease, Part I. Nature 280, 361–367 (1979)

    Article  Google Scholar 

  18. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993)

    MATH  Google Scholar 

  19. Genik, L., van den Driessche, P.: An epidemic model with recruitment-death demographics and discrete delays. Fields Inst. Commun. 21, 238–249 (1991)

    Google Scholar 

  20. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977)

    MATH  Google Scholar 

  21. Thieme, H.R.: Persistence under relaxed point-dissipativity with applications to an epidemic model. SIAM J. Math. Anal. 24, 407–435 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hsu Schmitz, S.F.: Effects of treatment or/and vaccination on HIV transmission in homosexuals with genetic heterogeneity. Math. Biosci. 167, 1–18 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Cai.

Additional information

This work is supported by the National Natural Science Foundation of China (No. 10671166) and the NSF of Henan Province.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, L., Li, X. & Yu, J. Analysis of a delayed HIV/AIDS epidemic model with saturation incidence. J. Appl. Math. Comput. 27, 365–377 (2008). https://doi.org/10.1007/s12190-008-0070-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-008-0070-3

Keywords

Mathematics Subject Classification (2000)

Navigation