Skip to main content
Log in

The localization of α-synuclein in the process of differentiation of human erythroid cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Although the neuronal protein α-synuclein (α-syn) is thought to play a central role in the pathogenesis of Parkinson’s disease (PD), its physiological function remains unknown. It is known that α-syn is also abundantly expressed in erythrocytes. However, its role in erythrocytes is also unknown. In the present study, we investigated the localization of α-syn in human erythroblasts and erythrocytes. Protein expression of α-syn increased during terminal differentiation of erythroblasts (from day 7 to day 13), whereas its mRNA level peaked at day 11. α-syn was detected in the nucleus, and was also seen in the cytoplasm and at the plasma membrane after day 11. In erythroblasts undergoing nucleus extrusion (day 13), α-syn was detected at the periphery of the nucleus. Interestingly, we found that recombinant α-syn binds to trypsinized inside-out vesicles of erythrocytes and phosphatidylserine (PS) liposomes. The dissociation constants for binding to PS/phosphatidylcholine (PC) liposomes of N-terminally acetylated (NAc) α-syn was lower than that of non NAc α-syn. This suggests that N-terminal acetylation plays a significant functional role. The results of the present study collectively suggest that α-syn is involved in the enucleation of erythroblasts and the stabilization of erythroid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988;8(8):2804–15.

    Article  PubMed  CAS  Google Scholar 

  2. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson disease and dementia with Lewy bodies. Proc Natl Acad Sci USA. 1998;95:6469–73.

    Article  PubMed  CAS  Google Scholar 

  3. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, et al. Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson disease and dementia with Lewy bodies. Am J Pathol. 1998;152:879–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett. 1998;251:205–8.

    Article  PubMed  CAS  Google Scholar 

  5. Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, et al. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA. 2009;106:20051–6.

    Article  PubMed  Google Scholar 

  6. Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis. 2008;5:55–9.

    Article  PubMed  CAS  Google Scholar 

  7. Nakai M, Fujita M, Waragai M, Sugama S, Wei J, Akatsu H, et al. Expression of α-synuclein, a presynaptic protein implicated in Parkinson’s disease, in erythropoietic lineage. Biochem Biophys Res Commun. 2007;358:104–10.

    Article  PubMed  CAS  Google Scholar 

  8. Sawada K, Krantz SB, Dai CH, Koury ST, Horn ST, Glick AD, et al. Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin. J Clin Invest. 1987;80:357–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hebiguchi M, Hirokawa M, Guo YM, Saito K, Wakui H, Komatsuda A, et al. Dynamics of human erythroblast enucleation. Int J Hematol. 2008;88:498–507.

    Article  PubMed  Google Scholar 

  10. Ubukawa K, Guo YM, Takahashi M, Hirokawa M, Michishita Y, Nara M, et al. Enucleation of human erythroblasts involves non-muscle myosin IIB. Blood. 2012;119:1036–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kobayashi I, Ubukawa K, Sugawara K, Asanuma K, Guo YM, Yamashita J, et al. Erythroblast enucleation is a dynein-dependent process. Exp Hematol. 2016;44:247–56.

    Article  PubMed  CAS  Google Scholar 

  12. Ghio S, Kamp F, Cauchi R, Giese A, Vassallo N. Interaction of α-synuclein with biomembranes in Parkinson’s disease—role of cardiolipin. Prog Lipid Res. 2016;61:73–82.

    Article  PubMed  CAS  Google Scholar 

  13. Nakamura K. α-Synuclein and mitochondria: partners in crime? Neurotherapeutics. 2013;10:391–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nakamura K, Nemani VM, Wallender EK, Kaehlcke K, Ott M, Edwards RH. Optical reporters for the conformation of α-synuclein reveal a specific interaction with mitochondria. J Neurosci. 2008;28:12305–17.

    Article  PubMed  CAS  Google Scholar 

  15. Dikiy I, Eliezer D. Folding and misfolding of α-synuclein on membranes. Biochim Biophys Acta. 2012;1818(4):1013–8.

    Article  PubMed  CAS  Google Scholar 

  16. Park JY, Kim KS, Lee SB, Ryu JS, Chung KC, Choo YK, et al. On the mechanism of internalization of α-synuclein into microglia: roles of ganglioside GM1 and lipid raft. J Neurochem. 2009;110:400–11.

    Article  PubMed  CAS  Google Scholar 

  17. Lee HJ, Choi C, Lee SJ. Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem. 2002;277:671–8.

    Article  PubMed  CAS  Google Scholar 

  18. Snead D, Eliezer D. Alpha-synuclein function and dysfunction on cellular membranes. Exp Neurobiol. 2014;23:292–313.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, et al. Characterization of semisynthetic and naturally N-α-acetylated α-synuclein in vitro and inintact cells: implications for aggregation and cellular properties of α-synuclein. J Biol Chem. 2012;287:28243–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Araki K, Yagi N. Nakatani R, Sekiguchi H, So M, Yagi H, et al. A small-angle X-ray scattering study of alpha-synuclein from human red blood cells. Sci Rep. 2016;6:30473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bartels T, Choi JG, Selkoe DJ. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011;477:107–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nunomura W, Kinoshita K, Parra M, Gascard P, An X, Mohandas N, et al. Similarities and differences in the structure and function o4.1G and 4.1R135, two protein 4.1 paralogs expressed in erythroid cells. Biochem J. 2010;432:407–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nunomura W, Parra M, Hebiguchi M, Sawada K, Mohandas N, Takakuwa Y. Marked difference in membrane protein binding properties of the two isoforms of protein 4.1R expressed at early and late stages of erythroid differentiation. Biochem J. 2009;417:141–8.

    Article  PubMed  Google Scholar 

  24. Hayakawa E, Tokumasu F, Nardone GA, Jin AJ, Hackley VA, Dvorak JA. A mycobacterium tuberculosis-derived lipid inhibits membrane fusion by modulating lipid membrane domains. Biophys J. 2007;93:4018–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31:1–9.

    Article  PubMed  Google Scholar 

  26. Iyer A, Roeters SJ, Schilderink N, Hommersom B, Heeren RM, Woutersen S, et al. The impact of N-terminal acetylation of α-synuclein on phospholipid membrane binding and fibril structure. J Biol Chem. 2016;291:21110–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. López-Marqués RL, Poulsen LR, Bailly A, Geisler M, Pomorski TG, Palmgren MG. Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta. 2015;1850(3):461–75.

    Article  PubMed  CAS  Google Scholar 

  28. Manno S, Mohandas N, Takakuwa Y. ATP-dependent mechanism protects spectrin against glycation in human erythrocytes. J Biol Chem. 2010;285:33923–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Xiao W, Shameli A, Harding CV, Meyerson HJ, Maitta RW. Late stages of hematopoiesis and B cell lymphopoiesis are regulated by α-synuclein, a key player in Parkinson’s disease. Immunobiology. 2014;219:836–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shameli A, Xiao W, Zheng Y, Shyu S, Sumodi J, Meyerson HJ, et al. A critical role for α-synuclein in development and function of T lymphocytes. Immunobiology. 2016;221:333–40.

    Article  PubMed  CAS  Google Scholar 

  31. Chaudhary H, Stefanovic AN, Subramaniam V, Claessens MM. Membrane interactions and fibrillization of alpha-synuclein play an essential role in membrane disruption. FEBS Lett. 2014;588:4457–63.

    Article  PubMed  CAS  Google Scholar 

  32. Fujiwara T, Harigae H. Biology of heme in mammalian erythroid cells and related disorders. BioMed Res Int. 2015; e278536.

  33. Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B, Eklund AC, et al. GATA transcription factors directly regulate the Parkinson’s disease-linked gene α-synuclein. Proc Natl Acad Sci USA. 2008;105:10907–12.

    Article  PubMed  Google Scholar 

  34. Nogueira-Pedro A, dos Santos GG, Oliveira DC, Hastreiter AA, Fock RA. Erythropoiesis in vertebrates: from ontogeny to clinical relevance. Front Biosci (Elite Ed). 2016;8:100–12.

    Google Scholar 

  35. Jelkmann W. Regulation of erythropoietin production. J Physiol. 2011;589(Pt 6):1251–8.

    Article  PubMed  CAS  Google Scholar 

  36. Juul SE, Pet GC. Erythropoietin and neonatal neuroprotection. Clin Perinatol. 2015;42:469–81.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Philippe Gascard (University of California) for critical evaluation and editing of the manuscript. The authors are grateful to Ms. Etsuko Kobayashi (Akita University) for her valuable technical assistance with immunocytochemistry. The authors are grateful to Mr. Tatsufumi Goto (Akita University), Mr. Ken Asanuma (Akita University) and Mr. Junsuke Yamashita (Akita University) for their valuable technical assistance with real time PCR. The authors thank Dr. Masahiko Hatakeyama (CLEA Japan Inc.) for generating the mouse monoclonal antibody to human α-syn (16E2).

Funding

This work was supported by JSPS KAKENHI Grants 15K09448 (WN), 15K09516 (HW), 15K19540 (KU), 15K14339 (KA), 26461414 (NT), 26461439 (KSa), and 26293210 (HM) and grants from Translational Research Network Program (HM), the SENSHIN Medical Research Foundation and the Idiopathic Disorders of Hematopoietic Organs Research Committee of the Ministry of Health, Labour and Welfare of Japan. This work was also supported in part by a private donation from Dr. Ken Satoh (Satoh Naika Clinic).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katsuya Araki or Hideki Mochizuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2152 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araki, K., Sugawara, K., Hayakawa, E.H. et al. The localization of α-synuclein in the process of differentiation of human erythroid cells. Int J Hematol 108, 130–138 (2018). https://doi.org/10.1007/s12185-018-2457-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-018-2457-8

Keywords

Navigation