Skip to main content
Log in

Expression of different functional isoforms in haematopoiesis

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Haematopoiesis is a complex process regulated at various levels facilitating rapid responses to external factors including stress, modulation of lineage commitment and terminal differentiation of progenitors. Although the transcription program determines the RNA pool of a cell, various mRNA strands can be obtained from the same template, giving rise to multiple protein isoforms. The majority of variants and isoforms co-occur in normal haematopoietic cells or are differentially expressed at various maturity stages of progenitor maturation and cellular differentiation within the same lineage or across lineages. Genetic aberrations or specific cellular states result in the predominant expression of abnormal isoforms leading to deregulation and disease. The presence of upstream open reading frames (uORF) in 5′ untranslated regions (UTRs) of a transcript, couples the utilization of start codons with the cellular status and availability of translation initiation factors (eIFs). In addition, tissue-specific and cell lineage-specific alternative promoter use, regulates several transcription factors producing transcript variants with variable 5′ exons. In this review, we propose to give a detailed account of the differential isoform formation, causing haematological malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336.

    Article  CAS  PubMed  Google Scholar 

  2. Hui J. Regulation of mammalian pre-mRNA splicing. Sci China C Life Sci. 2009;52(3):253–60.

    Article  CAS  PubMed  Google Scholar 

  3. Mischak H, Pierce JH, et al. Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-alpha and -delta and not by protein kinase C-beta II, -epsilon, -zeta, and -eta. J Biol Chem. 1993;268(27):20110–5.

    CAS  PubMed  Google Scholar 

  4. Redig AJ, Platanias LC. The protein kinase C (PKC) family of proteins in cytokine signaling in hematopoiesis. J Interferon Cytokine Res. 2007;27(8):623–36.

    Article  CAS  PubMed  Google Scholar 

  5. Feng Y, Wen J, et al. p38 Mitogen-activated protein kinase and hematologic malignancies. Arch Pathol Lab Med. 2009;133(11):1850–6.

    CAS  PubMed  Google Scholar 

  6. Ayoubi TA, Van De Ven WJ. Regulation of gene expression by alternative promoters. FASEB J. 1996;10(4):453–60.

    CAS  PubMed  Google Scholar 

  7. Cooper SJ, Trinklein ND, et al. Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome. Genome Res. 2006;16(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  8. Duan ZJ, Fang X, et al. Developmental specificity of recruitment of TBP to the TATA box of the human gamma-globin gene. Proc Natl Acad Sci USA. 2002;99(8):5509–14.

    Article  CAS  PubMed  Google Scholar 

  9. Tan JS, Mohandas N, et al. High frequency of alternative first exons in erythroid genes suggests a critical role in regulating gene function. Blood. 2006;107(6):2557–61.

    Article  CAS  PubMed  Google Scholar 

  10. Pozner A, Goldenberg D, et al. Transcription-coupled translation control of AML1/RUNX1 is mediated by cap- and internal ribosome entry site-dependent mechanisms. Mol Cell Biol. 2000;20(7):2297–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Barrett LW, Fletcher S, et al. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci. 2012;69(21):3613–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Blazquez-Domingo M, Grech G, et al. Translation initiation factor 4E inhibits differentiation of erythroid progenitors. Mol Cell Biol. 2005;25(19):8496–506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Arce L, Yokoyama NN, et al. Diversity of LEF/TCF action in development and disease. Oncogene. 2006;25(57):7492–504.

    Article  CAS  PubMed  Google Scholar 

  14. Calkhoven CF, Muller C, et al. Translational control of C/EBPalpha and C/EBPbeta isoform expression. Genes Dev. 2000;14(15):1920–32.

    CAS  PubMed  Google Scholar 

  15. Medenbach J, Seiler M, et al. Translational control via protein-regulated upstream open reading frames. Cell. 2011;145(6):902–13.

    Article  CAS  PubMed  Google Scholar 

  16. Grech G, von Lindern M. The role of translation initiation regulation in haematopoiesis. Comp Funct Genomics. 2012;2012:576540.

    Article  PubMed Central  PubMed  Google Scholar 

  17. McClelland S, Shrivastava R, et al. Regulation of translational efficiency by disparate 5′ UTRs of PPARgamma splice variants. PPAR Res. 2009;2009:193413.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Challen GA, Goodell MA. Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Exp Hematol. 2010;38(5):403–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gomez-del Arco P, Kashiwagi M, et al. Alternative promoter usage at the Notch1 locus supports ligand-independent signaling in T cell development and leukemogenesis. Immunity. 2010;33(5):685–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Li TW, Ting JH, et al. Wnt activation and alternative promoter repression of LEF1 in colon cancer. Mol Cell Biol. 2006;26(14):5284–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pan Q, Shai O, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.

    Article  CAS  PubMed  Google Scholar 

  22. Lynch KW. Regulation of alternative splicing by signal transduction pathways. Adv Exp Med Biol. 2007;623:161–74.

    Article  PubMed  Google Scholar 

  23. Grosso AR, Gomes AQ, et al. Tissue-specific splicing factor gene expression signatures. Nucl Acids Res. 2008;36(15):4823–32.

    Article  CAS  PubMed  Google Scholar 

  24. Fairbrother WG, Yeh RF, et al. Predictive identification of exonic splicing enhancers in human genes. Science. 2002;297(5583):1007–13.

    Article  CAS  PubMed  Google Scholar 

  25. Faustino NA, Cooper TA. Pre-mRNA splicing and human disease. Genes Dev. 2003;17(4):419–37.

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida K, Sanada M, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.

    Article  CAS  PubMed  Google Scholar 

  27. Liu HX, Cartegni L, et al. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat Genet. 2001;27(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  28. Eiring AM, Harb JG, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010;140(5):652–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Chao MP, Seita J, et al. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring Harb Symp Quant Biol. 2008;73:439–49.

    Article  CAS  PubMed  Google Scholar 

  30. Renstrom J, Kroger M, et al. How the niche regulates hematopoietic stem cells. Chem Biol Interact. 2010;184(1–2):7–15.

    Article  PubMed  Google Scholar 

  31. Yoon D, Ponka P, et al. Hypoxia. 5. Hypoxia and hematopoiesis. Am J Physiol Cell Physiol. 2011;300(6):C1215–22.

    Article  CAS  PubMed  Google Scholar 

  32. Calligaris R, Bottardi S, et al. Alternative translation initiation site usage results in two functionally distinct forms of the GATA-1 transcription factor. Proc Natl Acad Sci USA. 1995;92(25):11598–602.

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed N, Howard L, et al. Early endodermal expression of the Xenopus Endodermin gene is driven by regulatory sequences containing essential Sox protein-binding elements. Differentiation. 2004;72(4):171–84.

    Article  CAS  PubMed  Google Scholar 

  34. Hollanda LM, Lima CS, et al. An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis. Nat Genet. 2006;38(7):807–12.

    Article  CAS  PubMed  Google Scholar 

  35. Hong W, Nakazawa M, et al. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J. 2005;24(13):2367–78.

    Article  CAS  PubMed  Google Scholar 

  36. Snow JW, Orkin SH. Translational isoforms of FOG1 regulate GATA1-interacting complexes. J Biol Chem. 2009;284(43):29310–9.

    Article  CAS  PubMed  Google Scholar 

  37. Calkhoven CF, Muller C, et al. Translational control of SCL-isoform expression in hematopoietic lineage choice. Genes Dev. 2003;17(8):959–64.

    Article  CAS  PubMed  Google Scholar 

  38. Wek RC, Jiang HY, et al. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 2006;34(Pt 1):7–11.

    CAS  PubMed  Google Scholar 

  39. Pabst T, Mueller BU, et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med. 2001;7(4):444–51.

    Article  CAS  PubMed  Google Scholar 

  40. Ren X, Gomez GA, et al. Scl isoforms act downstream of etsrp to specify angioblasts and definitive hematopoietic stem cells. Blood. 2010;115(26):5338–46.

    Article  CAS  PubMed  Google Scholar 

  41. Wouters BJ, Lowenberg B, et al. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009;113(13):3088–91.

    Article  CAS  PubMed  Google Scholar 

  42. Cleaves R, Wang QF, et al. C/EBPalphap30, a myeloid leukemia oncoprotein, limits G-CSF receptor expression but not terminal granulopoiesis via site-selective inhibition of C/EBP DNA binding. Oncogene. 2004;23(3):716–25.

    Article  CAS  PubMed  Google Scholar 

  43. Cornillet-Lefebvre P, Cuccuini W, et al. Constitutive phosphoinositide 3-kinase activation in acute myeloid leukemia is not due to p110delta mutations. Leukemia. 2006;20(2):374–6.

    Article  CAS  PubMed  Google Scholar 

  44. Beghini A, Peterlongo P, et al. C-kit mutations in core binding factor leukemias. Blood. 2000;95(2):726–7.

    CAS  PubMed  Google Scholar 

  45. Grech G, Blazquez-Domingo M, et al. Igbp1 is part of a positive feedback loop in stem cell factor-dependent, selective mRNA translation initiation inhibiting erythroid differentiation. Blood. 2008;112(7):2750–60.

    Article  CAS  PubMed  Google Scholar 

  46. Neviani P, Santhanam R, et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest. 2007;117(9):2408–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Pinder JC, Chung A, et al. Membrane attachment sites for the membrane cytoskeletal protein 4.1 of the red blood cell. Blood. 1993;82(11):3482–8.

    CAS  PubMed  Google Scholar 

  48. Rebollo A, Schmitt C. Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol. 2003;81(3):171–5.

    Article  CAS  PubMed  Google Scholar 

  49. Dumortier A, Kirstetter P, et al. Ikaros regulates neutrophil differentiation. Blood. 2003;101(6):2219–26.

    Article  CAS  PubMed  Google Scholar 

  50. Ronni T, Payne KJ, et al. Human Ikaros function in activated T cells is regulated by coordinated expression of its largest isoforms. J Biol Chem. 2007;282(4):2538–47.

    Article  CAS  PubMed  Google Scholar 

  51. Sun L, Heerema N, et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 1999;96(2):680–5.

    Article  CAS  PubMed  Google Scholar 

  52. Meleshko AN, Movchan LV, et al. Relative expression of different Ikaros isoforms in childhood acute leukemia. Blood Cells Mol Dis. 2008;41(3):278–83.

    Article  CAS  PubMed  Google Scholar 

  53. Davuluri RV, Suzuki Y, et al. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet. 2008;24(4):167–77.

    Article  CAS  PubMed  Google Scholar 

  54. Yamanaka R, Kim GD, et al. CCAAT/enhancer binding protein epsilon is preferentially up-regulated during granulocytic differentiation and its functional versatility is determined by alternative use of promoters and differential splicing. Proc Natl Acad Sci USA. 1997;94(12):6462–7.

    Article  CAS  PubMed  Google Scholar 

  55. Pischedda C, Cocco S, et al. Isolation of a differentially regulated splicing isoform of human NF-E2. Proc Natl Acad Sci USA. 1995;92(8):3511–5.

    Article  CAS  PubMed  Google Scholar 

  56. Toki T, Itoh J, et al. Abundant expression of erythroid transcription factor P45 NF-E2 mRNA in human peripheral granulocytes. Biochem Biophys Res Commun. 1996;219(3):760–5.

    Article  CAS  PubMed  Google Scholar 

  57. Levanon D, Groner Y. Structure and regulated expression of mammalian RUNX genes. Oncogene. 2004;23(24):4211–9.

    Article  CAS  PubMed  Google Scholar 

  58. Brewer A, Gove C, et al. The human and mouse GATA-6 genes utilize two promoters and two initiation codons. J Biol Chem. 1999;274(53):38004–16.

    Article  CAS  PubMed  Google Scholar 

  59. Ito E, Toki T, et al. Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature. 1993;362(6419):466–8.

    Article  CAS  PubMed  Google Scholar 

  60. Minegishi N, Ohta J, et al. Alternative promoters regulate transcription of the mouse GATA-2 gene. J Biol Chem. 1998;273(6):3625–34.

    Article  CAS  PubMed  Google Scholar 

  61. Pan X, Minegishi N, et al. Identification of human GATA-2 gene distal IS exon and its expression in hematopoietic stem cell fractions. J Biochem. 2000;127(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  62. Banville D, Stocco R, et al. Human protein tyrosine phosphatase 1C (PTPN6) gene structure: alternate promoter usage and exon skipping generate multiple transcripts. Genomics. 1995;27(1):165–73.

    Article  CAS  PubMed  Google Scholar 

  63. Ma XZ, Jin T, et al. Abnormal splicing of SHP-1 protein tyrosine phosphatase in human T cells. Implications for lymphomagenesis. Exp Hematol. 2003;31(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  64. Speletas M, Argentou N, et al. Survivin isoform expression patterns in CML patients correlate with resistance to imatinib and progression, but do not trigger cytolytic responses. Clin Immunol. 2011;139(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  65. Chang WH, Liu TC, et al. Amiloride modulates alternative splicing in leukemic cells and resensitizes Bcr-AblT315I mutant cells to imatinib. Cancer Res. 2011;71(2):383–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godfrey Grech.

Additional information

G. Grech, J. Pollacco, M. Portelli, K. Sacco, S. Baldacchino, and C. Saliba contributed equally.

About this article

Cite this article

Grech, G., Pollacco, J., Portelli, M. et al. Expression of different functional isoforms in haematopoiesis. Int J Hematol 99, 4–11 (2014). https://doi.org/10.1007/s12185-013-1477-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-013-1477-7

Keywords

Navigation