Skip to main content
Log in

Regulation of mammalian pre-mRNA splicing

  • Special Topic
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

In eukaryotes, most protein-coding genes contain introns which are removed by precursor messenger RNA (pre-mRNA) splicing. Alternative splicing is a process by which multiple messenger RNAs (mRNAs) are generated from a single pre-mRNA, resulting in functionally distinct proteins. Recent genome-wide analyses of alternative splicing indicated that in higher eukaryotes alternative splicing is an important mechanism that generates proteomic complexity and regulates gene expression. Mis-regulation of splicing causes a wide range of human diseases. This review describes the current understanding of pre-mRNA splicing and the mechanisms that regulate mammalian pre-mRNA splicing. It also discusses emerging directions in the field of alternative splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berget S M, Moore C, Sharp P A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA, 1977, 74: 3171–3175 269380, 10.1073/pnas.74.8.3171, 1:CAS:528:DyaE2sXlsVOgsrs%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Chow L T, Gelinas R E, Broker T R, et al. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell, 1977, 12: 1–8 902310, 10.1016/0092-8674(77)90180-5, 1:STN:280:DyaE1c%2FgtF2qsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  3. Zhou Z, Licklider L J, Gvgi S P, et al. Comprehensive proteomic analysis of the human spliceosomes. Nature, 2002, 419: 182–185 12226669, 10.1038/nature01031, 1:CAS:528:DC%2BD38XmvV2qsb8%3D

    Article  PubMed  CAS  Google Scholar 

  4. Rappsilber J, Ryder U, Lamond A I, et al. Large-scale proteomic analysis of the human spliceosomes. Genome Res, 2002, 12: 1231–1245 12176931, 10.1101/gr.473902, 1:CAS:528:DC%2BD38Xmtl2rur4%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Will C L, Luhrmann R. Spliceosomal U snRNP biogenesis, structure and function. Curr Opin Cell Biol, 2001, 13: 290–301 11343899, 10.1016/S0955-0674(00)00211-8, 1:CAS:528:DC%2BD3MXktVaju78%3D

    Article  PubMed  CAS  Google Scholar 

  6. Gesteland R F, Cech T R, Atkins J F. The RNA World. 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1999. 525–560

    Google Scholar 

  7. Brow D A. Allosteric cascade of spliceosome activation. Annu Rev Genet, 2002, 36: 333–360 12429696, 10.1146/annurev.genet.36.043002.091635, 1:CAS:528:DC%2BD3sXjslekug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  8. Tarn W Y, Steitz J A. Pre-mRNA splicing: the discovery of a new spliceosome doubles the callenge. Trends Biochem Sci, 1997, 22: 132–137 9149533, 10.1016/S0968-0004(97)01018-9, 1:CAS:528:DyaK2sXislCgtLs%3D

    Article  PubMed  CAS  Google Scholar 

  9. Caudevilla C, Serra D, Miliar A, et al. Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proc Natl Acad Sci USA, 1998, 95: 12185–12190 9770461, 10.1073/pnas.95.21.12185, 1:CAS:528:DyaK1cXmsl2rsr0%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Akopian A N, Okuse K, Souslova V, et al. Trans-splicing of a voltage-gated sodium channel is regulated by nerve growth factor. FEBS Lett, 1999, 445: 177–182 10069396, 10.1016/S0014-5793(99)00126-X, 1:CAS:528:DyaK1MXht1Ogs7s%3D

    Article  PubMed  CAS  Google Scholar 

  11. Takahara T, Kanazu S I, Yanagisawa S, et al. Heterogeneous Sp1 mRNAs in human HepG2 cells include a product of homotypic trans-splicing. J Biol Chem, 2000, 275: 38067–38072 10973950, 10.1074/jbc.M002010200, 1:CAS:528:DC%2BD3cXoslWnsr8%3D

    Article  PubMed  CAS  Google Scholar 

  12. Flouriot G, Brand H, Seraphin B, et al. Natural trans-spliced mRNAs are generated from the human estrogen receptor-alpha (hER alpha) gene. J Biol Chem, 2002, 277: 26244–26251 12011094, 10.1074/jbc.M203513200, 1:CAS:528:DC%2BD38XlsFKrtL0%3D

    Article  PubMed  CAS  Google Scholar 

  13. Dixon R J, Eperon I C, Hall L, et al. A genome-wide survey demonstrates widespread non-linear mRNA in expressed sequences from multiple species. Nucleic Acids Res, 2005, 33: 5904–5913 16237125, 10.1093/nar/gki893, 1:CAS:528:DC%2BD2MXht1OmtrvL

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Li B L, Li X L, Duan Z J, et al. Human acyl-CoA: cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes. J Biol Chem, 1999, 274: 11060–11071 10196189, 10.1074/jbc.274.16.11060, 1:CAS:528:DyaK1MXis1GmsL0%3D

    Article  PubMed  CAS  Google Scholar 

  15. Yang L, Lee O, Chen J, et al. Human acyl-coenzyme A: cholesterol acyltransferase 1 (acat1) sequences located in two different chromosomes (7 and 1) are required to produce a novel ACAT1 isoenzyme with additional sequence at the N terminus. J Biol Chem, 2004, 279: 46253–46262 15319423, 10.1074/jbc.M408155200, 1:CAS:528:DC%2BD2cXovVCnurs%3D

    Article  PubMed  CAS  Google Scholar 

  16. Chatterjee T K, Fisher R A. Novel alternative splicing and nuclear localization of human RGS12 gene products. J Biol Chem, 2000, 275: 29660–29671 10869340, 10.1074/jbc.M000330200, 1:CAS:528:DC%2BD3cXmvFKjtrk%3D

    Article  PubMed  CAS  Google Scholar 

  17. Finta C, Zaphiropoulos P G. Intergenic mRNA molecules resulting from trans-splicing. J Biol Chem, 2002, 277: 5882–5890 11726664, 10.1074/jbc.M109175200, 1:CAS:528:DC%2BD38XhvFyrsbc%3D

    Article  PubMed  CAS  Google Scholar 

  18. Hirano M, Noda T. Genomic organization of the mouse Msh4 gene producing bicistronic, chimeric and antisense mRNA. Gene, 2004, 342: 165–177 15527976, 10.1016/j.gene.2004.08.016, 1:CAS:528:DC%2BD2cXptl2hsLg%3D

    Article  PubMed  CAS  Google Scholar 

  19. Hastings K E. SL trans-splicing: Easy come or easy go? Trends Genet, 2005, 21: 240–247 15797620, 10.1016/j.tig.2005.02.005, 1:CAS:528:DC%2BD2MXis1KjtLs%3D

    Article  PubMed  CAS  Google Scholar 

  20. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature, 2004, 431: 931–945 10.1038/nature03001, 1:CAS:528:DC%2BD2cXoslSlt7o%3D

    Article  Google Scholar 

  21. Stamm S, Ben-Ari S, Rafalska I, et al. Function of alternative splicing. Gene, 2005, 344: 1–20 15656968, 10.1016/j.gene.2004.10.022, 1:CAS:528:DC%2BD2MXkvVSgtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  22. Sharp P A. Split genes and RNA splicing. Cell, 1994, 77: 805–815 7516265, 10.1016/0092-8674(94)90130-9, 1:CAS:528:DyaK2cXltVSksbw%3D

    Article  PubMed  CAS  Google Scholar 

  23. Lander E S, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860–921 11237011, 10.1038/35057062, 1:CAS:528:DC%2BD3MXhsFCjtLc%3D

    Article  PubMed  CAS  Google Scholar 

  24. Johnson J M, Castle J, Garrett-Engele P, et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 2003, 302: 2141–2144 14684825, 10.1126/science.1090100, 1:CAS:528:DC%2BD3sXpvVCjs7Y%3D

    Article  PubMed  CAS  Google Scholar 

  25. Kampa D, Cheng J, Kapranov P, et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res, 2004, 14: 331–342 14993201, 10.1101/gr.2094104, 1:CAS:528:DC%2BD2cXisFWiu7s%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Coulter L R, Landree M A, Cooper T A. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol, 1997, 17: 2143–2150 9121463, 1:CAS:528:DyaK2sXhvFOhsrg%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Liu H X, Zhang M, Krainer A R. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev, 1998, 12: 1998–2012 9649504, 10.1101/gad.12.13.1998, 1:CAS:528:DyaK1cXksFyhtbY%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Schaal T D, Maniatis T. Selection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences. Mol Cell Biol, 19: 1705–1719

  29. Fairbrother W G, Yeh R F, Sharp P A, et al. Predictive identification of exonic splicing enhancers in human genes. Science, 2002, 297: 1007–1013 12114529, 10.1126/science.1073774, 1:CAS:528:DC%2BD38Xmt1Ckt74%3D

    Article  PubMed  CAS  Google Scholar 

  30. Zhang X H, Chasin L A. Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev, 2004, 18: 1241–1250 15145827, 10.1101/gad.1195304, 1:CAS:528:DC%2BD2cXkvVyrsbw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Wang Z, Rolish M E, Yeo G, et al. Systematic identification and analysis of exonic splicing silencers. Cell, 2004, 119: 831–845 15607979, 10.1016/j.cell.2004.11.010, 1:CAS:528:DC%2BD2MXmsF2i

    Article  PubMed  CAS  Google Scholar 

  32. Ladd A N, Cooper T A. Finding signals that regulate alternative splicing in the post-genomic era. Genome Biol, 2002, 3: reviews0008 12429065, 10.1186/gb-2002-3-11-reviews0008

    Article  PubMed Central  PubMed  Google Scholar 

  33. Black D L. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem, 2003, 72: 291–336 12626338, 10.1146/annurev.biochem.72.121801.161720, 1:CAS:528:DC%2BD3sXntFSgtLg%3D

    Article  PubMed  CAS  Google Scholar 

  34. Hui J, Stangl K, Lane W S, et al. HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nat Struct Biol, 2003, 10: 33–37 12447348, 10.1038/nsb875, 1:CAS:528:DC%2BD38Xps1Sitrk%3D

    Article  PubMed  CAS  Google Scholar 

  35. Hui J, Hung L H, Heiner M, et al. Intronic CA-repeat and CA-rich elements: a new class of regulators of mammalian alternative splicing. EMBO J, 2005, 24: 1988–1998 15889141, 10.1038/sj.emboj.7600677, 1:CAS:528:DC%2BD2MXks1Gnu7k%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Fu X D. The superfamily of arginine/serine-rich splicing factors. RNA, 1995, 1: 663–680 7585252, 1:CAS:528:DyaK2MXptV2jsb0%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Graveley B R. Sorting out the complexity of SR protein functions. RNA, 2000, 6: 1197–1211 10999598, 10.1017/S1355838200000960, 1:CAS:528:DC%2BD3cXms1Cis7g%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Krecic A M, Swanson M S. hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol, 1999, 11: 363–371 10395553, 10.1016/S0955-0674(99)80051-9, 1:CAS:528:DyaK1MXktFWms7g%3D

    Article  PubMed  CAS  Google Scholar 

  39. Matlin A J, Clark F, Smith C W. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol, 2005, 6: 386–398 15956978, 10.1038/nrm1645, 1:CAS:528:DC%2BD2MXjvF2jsbo%3D

    Article  PubMed  CAS  Google Scholar 

  40. Blencowe B J. Alternative splicing: new insights from global analyses. Cell, 2006, 126: 37–47 16839875, 10.1016/j.cell.2006.06.023, 1:CAS:528:DC%2BD28Xns1Cgtrg%3D

    Article  PubMed  CAS  Google Scholar 

  41. Buratti E, Baralle F E. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol, 2004, 24: 10505–10514 15572659, 10.1128/MCB.24.24.10505-10514.2004, 1:CAS:528:DC%2BD2cXhtFShu7bN

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Shin C, Manley J L. Cell signalling and the control of pre-mRNA splicing. Nat Rev Mol Cell Biol, 2004, 5: 727–738 15340380, 10.1038/nrm1467, 1:CAS:528:DC%2BD2cXntFCms7g%3D

    Article  PubMed  CAS  Google Scholar 

  43. Lynch K W. Regulation of alternative splicing by signal transduction pathways. Adv Exp Med Biol, 2007, 623: 161–174 18380346, 10.1007/978-0-387-77374-2_10

    Article  PubMed  Google Scholar 

  44. Weg-Remers S, Ponta H, Herrlich P, et al. Regulation of alternative pre-mRNA splicing by the ERK MAP-kinase pathway. EMBO J, 2001, 20: 4194–4203 11483522, 10.1093/emboj/20.15.4194, 1:CAS:528:DC%2BD3MXmtlChtL8%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Blaustein M, Pelisch F, Coso O A, et al. Mammary epithelial-mesenchymal interaction regulates fibronectin alternative splicing via phosphatidylinositol 3-kinase. J Biol Chem, 2004, 279: 21029–21037 15028734, 10.1074/jbc.M314260200, 1:CAS:528:DC%2BD2cXjvV2ntrs%3D

    Article  PubMed  CAS  Google Scholar 

  46. Blaustein M, Pelisch F, Tanos T, et al. Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol, 2005, 12: 1037–1044 16299516, 10.1038/nsmb1020, 1:CAS:528:DC%2BD2MXht1KrtL%2FL

    Article  PubMed  CAS  Google Scholar 

  47. Patel N A, Kaneko S, Apostolatos H S, et al. Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase C betaII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40. J Biol Chem, 2005, 280: 14302–14309 15684423, 10.1074/jbc.M411485200, 1:CAS:528:DC%2BD2MXivV2rtr8%3D

    Article  PubMed  CAS  Google Scholar 

  48. Xie J, Black D L. A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature, 2001, 410: 936–939 11309619, 10.1038/35073593, 1:CAS:528:DC%2BD3MXjt1Krtrc%3D

    Article  PubMed  CAS  Google Scholar 

  49. Lee JA, Xing Y, Nguyen D, et al. Depolarization and CaM kinase IV modulate NMDA receptor splicing through two essential RNA elements. PLoS Biol, 2007, 5: e40 17298178, 10.1371/journal.pbio.0050040, 1:CAS:528:DC%2BD2sXhslOqsrg%3D

    Article  PubMed Central  PubMed  Google Scholar 

  50. van der Houven van Oordt W, Diaz-Meco M T, Lozano J, et al. The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J Cell Biol, 2000, 149: 307–316 10769024, 10.1083/jcb.149.2.307

    Article  PubMed Central  PubMed  Google Scholar 

  51. Lynch K W, Weiss A. A model system for activation-induced alternative splicing of CD45 pre-mRNA in T cells implicates protein kinase C and Ras. Mol Cell Biol, 2000, 20: 70–80 10594010, 1:CAS:528:DC%2BD3cXltF2m, 10.1128/MCB.20.1.70-80.2000

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. König H, Ponta H, Herrlich P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J, 1998, 17: 2904–2913 9582284, 10.1093/emboj/17.10.2904

    Article  PubMed Central  PubMed  Google Scholar 

  53. Ponta H, Sherman L, Herrlich P A. CD44: From adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol, 2003, 4: 33–45 12511867, 10.1038/nrm1004, 1:CAS:528:DC%2BD3sXptV0%3D

    Article  PubMed  CAS  Google Scholar 

  54. Matter N, Herrlich P, König H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature, 2002, 420: 691–695. 12478298, 10.1038/nature01153, 1:CAS:528:DC%2BD38XpsVSitb0%3D

    Article  PubMed  CAS  Google Scholar 

  55. Matter N, Marx M, Weg-Remers S, et al. Heterogeneous ribonucleoprotein A1 is part of an exon-specific splice-silencing complex controlled by oncogenic signaling pathways. J Biol Chem, 2000, 275: 35353–35360 10958793, 10.1074/jbc.M004692200, 1:CAS:528:DC%2BD3cXotFeitbo%3D

    Article  PubMed  CAS  Google Scholar 

  56. Cheng C, Sharp P A. Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol, 2006, 26: 362–370 16354706, 10.1128/MCB.26.1.362-370.2006, 1:CAS:528:DC%2BD28Xjslaqt7o%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Ambros V. The functions of animal microRNAs. Nature, 2004, 431: 350–355 15372042, 10.1038/nature02871, 1:CAS:528:DC%2BD2cXnsFaiu7g%3D

    Article  PubMed  CAS  Google Scholar 

  58. Bartel D P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281–297 14744438, 10.1016/S0092-8674(04)00045-5, 1:CAS:528:DC%2BD2cXhtVals7o%3D

    Article  PubMed  CAS  Google Scholar 

  59. Spellman R, Llorian M, Smith C W. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell, 2007, 27: 420–434 17679092, 10.1016/j.molcel.2007.06.016, 1:CAS:528:DC%2BD2sXptlymsrs%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Boutz P L, Chawla G, Stoilov P, et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev, 2007, 21: 71–84 17210790, 10.1101/gad.1500707, 1:CAS:528:DC%2BD2sXmsFylug%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Makeyev E V, Zhang J, Carrasco M A, et al. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell, 2007, 27: 435–448 17679093, 10.1016/j.molcel.2007.07.015, 1:CAS:528:DC%2BD2sXptlymsrk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Wang G S, Cooper T A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet, 2007, 8: 749–761 17726481, 10.1038/nrg2164, 1:CAS:528:DC%2BD2sXhtVCrsb3L

    Article  PubMed  CAS  Google Scholar 

  63. Krawczak M, Reiss J, Cooper D N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet, 1992, 90: 41–54 1427786, 10.1007/BF00210743, 1:CAS:528:DyaK3sXks1Cmsro%3D

    Article  PubMed  CAS  Google Scholar 

  64. Nissim-Rafinia M, Kerem B. Splicing regulation as a potential genetic modifier. Trends Genet, 2002, 18: 123–127 11858835, 10.1016/S0168-9525(01)02619-1, 1:CAS:528:DC%2BD38XhtlGju78%3D

    Article  PubMed  CAS  Google Scholar 

  65. Møller L B, Tümer Z, Lund C, et al. Similar splice-site mutations of the ATP7A gene lead to different phenotypes: classical Menkes disease or occipital horn syndrome. Am J Hum Genet, 2000, 66: 1211–1220. 10739752, 10.1086/302857

    Article  PubMed Central  PubMed  Google Scholar 

  66. Pagani F, Buratti E, Stuani C, et al. A new type of mutation causes a splicing defect in ATM. Nat Genet, 2002, 30: 426–429 11889466, 10.1038/ng858, 1:CAS:528:DC%2BD38Xisl2lsbw%3D

    Article  PubMed  CAS  Google Scholar 

  67. Blencowe B J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci, 2000, 25: 106–110 10694877, 10.1016/S0968-0004(00)01549-8, 1:CAS:528:DC%2BD3cXhsFOisr0%3D

    Article  PubMed  CAS  Google Scholar 

  68. Cartegni L, Chew S L, Krainer A R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet, 2002, 3: 285–298 11967553, 10.1038/nrg775, 1:CAS:528:DC%2BD38XjtFOrtrc%3D

    Article  PubMed  CAS  Google Scholar 

  69. Cartegni L, Krainer A R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet, 2002, 30: 377–384 11925564, 10.1038/ng854, 1:CAS:528:DC%2BD38Xisl2lsLo%3D

    Article  PubMed  CAS  Google Scholar 

  70. Kashima T, Manley J L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet, 2003, 34: 460–463 12833158, 10.1038/ng1207, 1:CAS:528:DC%2BD3sXmt1Sku7Y%3D

    Article  PubMed  CAS  Google Scholar 

  71. McKie A B, McHale J C, Keen T J, et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet, 2001, 10: 1555–1562 11468273, 10.1093/hmg/10.15.1555, 1:CAS:528:DC%2BD3MXlvFOitbg%3D

    Article  PubMed  CAS  Google Scholar 

  72. Vithana E N, Abu-Safieh L, Allen M J, et al. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell, 2001, 8: 375–381 11545739, 10.1016/S1097-2765(01)00305-7, 1:CAS:528:DC%2BD3MXmvFWgtr0%3D

    Article  PubMed  CAS  Google Scholar 

  73. Chakarova C F, Hims M M, Bolz H, et al. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum Mol Genet, 2002, 11: 87–92 11773002, 10.1093/hmg/11.1.87, 1:CAS:528:DC%2BD38XpsFCktw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  74. Ranum L P, Day J W. Myotonic dystrophy: RNA pathogenesis comes into focus. Am J Hum Genet, 2003, 74: 793–804 10.1086/383590

    Article  Google Scholar 

  75. Kanadia R N, Johnstone K A, Mankodi A, et al. A muscleblind knockout model for myotonic dystrophy. Science, 2003, 302: 1978–1980 14671308, 10.1126/science.1088583, 1:CAS:528:DC%2BD3sXps1amsLo%3D

    Article  PubMed  CAS  Google Scholar 

  76. Ho T H, Bundman D, Armstrong D L, et al. Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet, 2005, 14: 1539–1547 15843400, 10.1093/hmg/ddi162, 1:CAS:528:DC%2BD2MXktlKqt7g%3D

    Article  PubMed  CAS  Google Scholar 

  77. Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science, 2006, 311, 230–232 16357227, 10.1126/science.1118265, 1:CAS:528:DC%2BD28XkvVanuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  78. Le K, Mitsouras K, Roy M, et al. Detecting tissue-specific regulation of alternative splicing as a qualitative change in microarray data. Nucleic Acids Res, 2004, 32: e180 15598820, 10.1093/nar/gnh173, 1:CAS:528:DC%2BD2MXkt1alsg%3D%3D

    Article  PubMed Central  PubMed  Google Scholar 

  79. Pan Q, Shai O, Misquitta C, et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol Cell, 2004, 16: 929–941 15610736, 10.1016/j.molcel.2004.12.004, 1:CAS:528:DC%2BD2MXjvVWjsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  80. Sugnet C W, Srinivasan K, Clark T A, et al. Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLoS Comput Biol, 2006, 2: e4 16424921, 10.1371/journal.pcbi.0020004, 1:CAS:528:DC%2BD28XhtV2itbs%3D

    Article  PubMed Central  PubMed  Google Scholar 

  81. Clark T A, Schweitzer A C, Chen T X, et al. Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol, 2007, 8: R64 17456239, 10.1186/gb-2007-8-4-r64, 1:CAS:528:DC%2BD2sXmtV2nuro%3D

    Article  PubMed Central  PubMed  Google Scholar 

  82. Ule J, Ule A, Spencer J, et al. Nova regulates brain-specific splicing to shape the synapse. Nat Genet, 2005, 37: 844–852 16041372, 10.1038/ng1610, 1:CAS:528:DC%2BD2MXmsFKlsLs%3D

    Article  PubMed  CAS  Google Scholar 

  83. Boutz P L, Stoilov P, Li Q, et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev, 2007, 21: 1636–1652 17606642, 10.1101/gad.1558107, 1:CAS:528:DC%2BD2sXns1yht7k%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Hung L H, Heiner M, Hui J, et al. Diverse roles of hnRNP L in mammalian mRNA processing: a combined microarray and RNAi analysis. RNA, 2008, 14: 284–296 18073345, 10.1261/rna.725208, 1:CAS:528:DC%2BD1cXhslGis7c%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Ip JY, Tong A, Pan Q, et al. Global analysis of alternative splicing during T-cell activation. RNA, 2007, 13: 563–572 17307815, 10.1261/rna.457207, 1:CAS:528:DC%2BD2sXkt1ChtLY%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Gardina P J, Clark T A, Shimada B, et al. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics, 2006, 7: 325 17192196, 10.1186/1471-2164-7-325, 1:CAS:528:DC%2BD2sXhtFajsLs%3D

    Article  PubMed Central  PubMed  Google Scholar 

  87. Cheung H C, Baggerly K A, Tsavachidis S, et al. Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays. BMC Genomics, 2008, 9: 216 18474104, 10.1186/1471-2164-9-216, 1:CAS:528:DC%2BD1cXotlertLk%3D

    Article  PubMed Central  PubMed  Google Scholar 

  88. Ule J, Jensen K B, Ruggiu M, et al. CLIP identifies Nova-regulated RNA networks in the brain. Science, 2003, 302: 1212–1215. 14615540, 10.1126/science.1090095, 1:CAS:528:DC%2BD3sXpt1Smtr0%3D

    Article  PubMed  CAS  Google Scholar 

  89. Licatalosi D D, Mele A, Fak J J, et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 2008, 456: 464–469 18978773, 10.1038/nature07488, 1:CAS:528:DC%2BD1cXhsVegtbfK

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Sultan M, Schulz M H, Richard H, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 2008, 321: 956–960. 18599741, 10.1126/science.1160342, 1:CAS:528:DC%2BD1cXpslWrur4%3D

    Article  PubMed  CAS  Google Scholar 

  91. Wang E T, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature, 2008, 456: 470–476 18978772, 10.1038/nature07509, 1:CAS:528:DC%2BD1cXhsVegtbfL

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Pan Q, Shai O, Lee L J, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet, 2008, 40: 1413–1415 18978789, 10.1038/ng.259, 1:CAS:528:DC%2BD1cXhsVWhu7vP

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingYi Hui.

Additional information

Supported by the Program of “one Hundred Talented people” of the Chinese Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, J. Regulation of mammalian pre-mRNA splicing. SCI CHINA SER C 52, 253–260 (2009). https://doi.org/10.1007/s11427-009-0037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0037-0

Keywords

Navigation