Skip to main content
Log in

High WT1 mRNA expression after induction chemotherapy and FLT3-ITD have prognostic impact in pediatric acute myeloid leukemia: a study of the Japanese Childhood AML Cooperative Study Group

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The prognostic value of WT1 mRNA expression in pediatric acute myeloid leukemia (AML) remains controversial. A sample of newly diagnosed (n = 158) AML patients from the Japanese Childhood AML Cooperative Treatment Protocol, AML 99, were simultaneously analyzed for WT1 expression, cytogenetic abnormalities and gene alterations (FLT3, KIT, MLL, and RAS). WT1 expression (including more than 2,500 copies/μgRNA) was detected in 122 of the 158 (77.8 %) initial diagnostic AML bone marrow samples (median 45,500 copies/μgRNA). Higher WT1 expression was detected in French American British (FAB)-M0, M3, M7 and lower expression in M4 and M5. Higher WT1 expression was detected in AML with inv(16), t(15;17) and Down syndrome and lower in AML with 11q23 abnormalities. Multivariate analyses demonstrated that FLT3-internal tandem duplication (ITD), KIT mutation, MLL-partial tandem duplication were correlated with poor prognosis; however, higher WT1 expression was not. FLT3-ITD was correlated with WT1 expression and prognosis. Furthermore, 74 WT1 expression after induction chemotherapy was analyzed. Higher WT1 expression after induction chemotherapy was significantly correlated with M1 or M2/M3 marrow, FLT3-ITD and poor prognosis. Multivariate analyses in 74 AML patients revealed that FLT3-ITD, MLL-PTD, and KIT mutations were associated with poor prognosis; however, NRAS Mutation, KRAS mutation and high WT1 expression (>10,000 copies/μgRNA) did not show poor prognosis. Our findings suggest that higher WT1 expression at diagnosis does not correlate with poor prognosis, but that WT1 expression after induction chemotherapy is considered to be a useful predictor of clinical outcome in pediatric AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Raimondi SC, Chang MN, Ravindranath Y, et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a Cooperative Pediatric Oncology Group Study—POG8821. Blood. 1999;94:3707–16.

    PubMed  CAS  Google Scholar 

  2. Webb DK, Harrison G, Stevens RF, et al. MRC Childhood Leukemia Working Party. Relationships between age at diagnosis, clinical features, and outcome of therapy in children treated in the Medical Research Council AML 10 and 12 trials for acute myeloid leukemia. Blood. 2001;98:1714–20.

    Article  PubMed  CAS  Google Scholar 

  3. Creutzig U, Ritter J, Zimmermann M, et al. Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of study acute myeloid leukemia-Berlin-Frankfurt-Munster 93. J Clin Oncol. 2001;19:2705–13.

    PubMed  CAS  Google Scholar 

  4. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100:4325–36.

    Article  PubMed  CAS  Google Scholar 

  5. Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, Pounds S, Razzouk BI, Lacayo NJ, Cao X, Meshinchi S, Degar B, Airewele G, Raimondi SC, Onciu M, Coustan-Smith E, Downing JR, Leung W, Pui CH, Campana D. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11:543–52.

    Article  PubMed  CAS  Google Scholar 

  6. Bergmann L, Miething C, Maurer U, et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood. 1997;90:1217–25.

    PubMed  CAS  Google Scholar 

  7. Trka J, Kalinova M, Hrusak O, et al. Real-time quantitative PCR detection of WT1 gene expression in children with AML: prognostic significance, correlation with disease status and residual disease detection by flow cytometry. Leukemia. 2002;16:1381–9.

    Article  PubMed  CAS  Google Scholar 

  8. Garg M, Moore H, Tobal K, Liu Yin JA. Prognostic significance of quantitative analysis of WT1 gene transcripts by competitive reverse transcription polymerase chain reaction in acute leukaemia. Br J Haematol. 2003;123:49–59.

    Article  PubMed  CAS  Google Scholar 

  9. Barragan E, Cervera J, Bolufer P, et al. Prognostic implications of Wilms’ tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica. 2004;89:926–33.

    PubMed  CAS  Google Scholar 

  10. Gaiger A, Schmid D, Heinze G, et al. Detection of the WT1 transcript by RT-PCR in complete remission has no prognostic relevance in de novo acute myeloid leukemia. Leukemia. 1998;12:1886–94.

    Article  PubMed  CAS  Google Scholar 

  11. Weisser M, Kern W, Rauhut S, et al. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia. 2005;19:1416–23.

    Article  PubMed  CAS  Google Scholar 

  12. Miyawaki S, Hatsumi N, Tamaki T, Naoe T, Ozawa K, Kitamura K, Karasuno T, Mitani K, Kodera Y, Yamagami T, Koga D. Prognostic potential of detection of WT1mRNA level in peripheral blood in adult acute myeloid leukemia. Leuk Lymphoma. 2010;51:1855–61.

    Article  PubMed  CAS  Google Scholar 

  13. Lapillonne H, Renneville A, Auvrignon A, et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol. 2006;24:1507–15.

    Article  PubMed  CAS  Google Scholar 

  14. Cilloni D, Renneville A, Hermitte F, Hills RK, Daly S, Jovanovic JV, Gottardi E, Fava M, Schnittger S, Weiss T, Izzo B, Nomdedeu J, van der Heijden A, van der Reijden BA, Jansen JH, van der Velden VH, Ommen H, Preudhomme C, Saglio G, Grimwade D. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27:5195–201.

    Article  PubMed  CAS  Google Scholar 

  15. Noronha SA, Farrar JE, Alonzo TA, Gerbing RB, Lacayo NJ, Dahl GV, Ravindranath Y, Arceci RJ, Loeb DM. WT1 expression at diagnosis does not predict survival in pediatric AML: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2009;53:1136–9.

    Article  PubMed  Google Scholar 

  16. Keilholz U, Menssen HD, Gaiger A, et al. Wilms’ tumour gene 1 (WT1) in human neoplasia. Leukemia. 2005;19:1318–23.

    Article  PubMed  CAS  Google Scholar 

  17. Yang L, Han Y, Saurez Saiz F, Minden MD. A tumor suppressor and oncogene: the WT1 story. Leukemia. 2007;21:868–76.

    PubMed  CAS  Google Scholar 

  18. Meshinchi S, Stirewalt DL, Alonzo TA, et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood. 2003;102:1474–9.

    Article  PubMed  CAS  Google Scholar 

  19. Zwaan CM, Meshinchi S, Radich JP, et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood. 2003;102:2387–94.

    Article  PubMed  CAS  Google Scholar 

  20. Dohner K, Tobis K, Ulrich R, et al. Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol. 2002;20:3254–61.

    Article  PubMed  Google Scholar 

  21. Shimada A, Taki T, Tabuchi K, Taketani T, Hanada R, Tawa A, Tsuchida M, Horibe K, Tsukimoto I, Hayashi Y. Tandem duplications of MLL and FLT3 are correlated with poor prognoses in pediatric acute myeloid leukemia: a study of the Japanese childhood AML Cooperative Study Group. Pediatr Blood Cancer. 2008;50:264–9.

    Article  PubMed  Google Scholar 

  22. Care RS, Valk PJ, Goodeve AC, et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol. 2003;121:775–7.

    Article  PubMed  CAS  Google Scholar 

  23. Shimada A, Taki T, Tabuchi K, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood. 2006;107:1806–9.

    Article  PubMed  CAS  Google Scholar 

  24. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S. Implications of NRAS mutations in AML: a study of 2502 patients. Blood. 2006;107:3847–53.

    Article  PubMed  CAS  Google Scholar 

  25. Spassov BV, Stoimenov AS, Balatzenko GN, Genova ML, Peichev DB, Konstantinov SM. Wilms’ tumor protein and FLT3-internal tandem duplication expression in patients with de novo acute myeloid leukemia. Hematology. 2011;16:37–42.

    Article  PubMed  CAS  Google Scholar 

  26. Becker H, Marcucci G, Maharry K, Radmacher MD, Mrózek K, Margeson D, Whitman SP, Paschka P, Holland KB, Schwind S, Wu YZ, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Moore JO, Caligiuri MA, Larson RA, Bloomfield CD. Mutations of the Wilms tumor 1 gene (WT1) in older patients with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood. 2010;116:788–92.

    Article  PubMed  CAS  Google Scholar 

  27. Ho PA, Zeng R, Alonzo TA, Gerbing RB, Miller KL, Pollard JA, Stirewalt DL, Heerema NA, Raimondi SC, Hirsch B, Franklin JL, Lange B, Meshinchi S. Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): a report from the Children’s Oncology Group. Blood. 2010;116:702–10.

    Article  PubMed  CAS  Google Scholar 

  28. Tsukimoto I, Tawa A, Hanada R, et al. Excellent outcome of risk stratified treatment for childhood acute myeloid leukemia-AML99 trial: for the Japanese Childhood AML Cooperative Study Group. Blood 2005:106:261a. Abstract 889.

  29. Kobayashi R, Tawa A, Hanada R, Horibe K, Tsuchida M. Japanese childhood AML cooperative study group. Extramedullary infiltration at diagnosis and prognosis in children with acute myelogenous leukemia. Pediatr Blood Cancer. 2007;48:393–8.

    Article  PubMed  Google Scholar 

  30. Taketani T, Taki T, Sugita K, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004;103:1085–8.

    Article  PubMed  CAS  Google Scholar 

  31. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97:2434–9.

    Article  PubMed  CAS  Google Scholar 

  32. Jamal R, Taketani T, Taki T, et al. Coduplication of the MLL and FLT3 genes in patients with acute myeloid leukemia. Genes Chromosomes Cancer. 2001;31:187–90.

    Article  PubMed  CAS  Google Scholar 

  33. Schnittger S, Wormann B, Hiddemann W, et al. Partial tandem duplications of the MLL gene are detectable in peripheral blood and bone marrow of nearly all healthy donors. Blood. 1998;92:1728–34.

    PubMed  CAS  Google Scholar 

  34. Sano H, Shimada A, Taki T, Murata C, Park MJ, Sotomatsu M, Tabuchi K, Tawa A, Kobayashi R, Horibe K, Tsuchida M, Hanada R, Tsukimoto I, Hayashi Y. RAS mutations are frequent in FAB type M4 and M5 of acute myeloid leukemia, and related to late relapse: a study of the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2012;95:509–15.

    Article  PubMed  Google Scholar 

  35. Sekiya M, Adachi M, Hinoda Y, Imai K, Yachi A. Downregulation of Wilms’ tumor gene (wt1) during myelomonocytic differentiation in HL60 cells. Blood. 1994;83:1876–82.

    PubMed  CAS  Google Scholar 

  36. Nishida S, Hosen N, Shirakata T, et al. AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood. 2006;107:3303–12.

    Article  PubMed  CAS  Google Scholar 

  37. Hossain A, Nixon M, Kuo MT, Saunders GF. N-terminally truncated WT1 protein with oncogenic properties overexpressed in leukemia. J Biol Chem. 2006;281:28122–30.

    Article  PubMed  CAS  Google Scholar 

  38. Siehl JM, Reinwald M, Heufelder K, Menssen HD, Keilholz U, Thiel E. Expression of Wilms’ tumor gene 1 at different stages of acute myeloid leukemia and analysis of its major splice variants. Ann Hematol. 2004;83:745–50.

    Article  PubMed  Google Scholar 

  39. Ito K, Oji Y, Tatsumi N, et al. Antiapoptotic function of 17AA(+)WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene. 2006;25:4217–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to all the doctors for their participation in the Japanese Childhood AML Cooperative Study Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhide Hayashi.

Additional information

Supported in part by a Grant-in-Aid for Cancer Research and a grant for Clinical Cancer Research and Research on Children and Families from the Ministry of Health, Labor and Welfare of Japan, and by a research grant for Gunma Prefectural Hospitals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12185_2012_1163_MOESM1_ESM.doc

Supplemental Figure 1. WT1 mRNA expression in 158 AML patients at time of initial diagnosis and 28 normal controls. A total of 122 out of 158 (77.8%) AML patients expressed more than the cut-off value of 2,500 copies/μgRNA. (DOC 40 kb)

12185_2012_1163_MOESM2_ESM.doc

Supplemental Figure 2. WT1 mRNA expression in 74 AML patients except for t(15;17) and Down syndrome at initial diagnosis and after 1st induction chemotherapy. A total of 58 out of 74 (78.4%) patients were WT1-positive at time of diagnosis (median, 18,000 μg/RNA) and 11 out of 74 (14.9%) still remained WT1-positive after induction chemotherapy (median, 215 μg/RNA). (DOC 45 kb)

Supplementary material 3 (DOCX 18 kb)

Supplementary material 4 (DOC 27 kb)

About this article

Cite this article

Shimada, A., Taki, T., Koga, D. et al. High WT1 mRNA expression after induction chemotherapy and FLT3-ITD have prognostic impact in pediatric acute myeloid leukemia: a study of the Japanese Childhood AML Cooperative Study Group. Int J Hematol 96, 469–476 (2012). https://doi.org/10.1007/s12185-012-1163-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1163-1

Keywords

Navigation