Skip to main content

Advertisement

Log in

Proliferation and chondrogenic differentiation potential of menstrual blood- and bone marrow-derived stem cells in two-dimensional culture

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Menstrual blood is easily accessible, renewable, and inexpensive source of stem cells. In this study, we investigated the chondrogenic differentiation potential of menstrual blood-derived stem cells (MenSCs) compared with that of bone marrow-derived stem cells (BMSCs) in two-dimensional culture. Following characterization of isolated cells, the potential for chondrogenic differentiation of MenSCs and BMSCs was evaluated by immunocytochemical and molecular experiments. MenSCs were strongly positive for mesenchymal stem cell markers in a manner similar to that of BMSCs. In contrast to BMSCs, MenSCs exhibited marked expression of OCT4, and higher proliferative capacity. Differentiated MenSCs showed strong immunoreactivity to a monoclonal antibody against Collagen type 2, in a pattern similar to BMSCs. Accumulation of proteoglycans in differentiated MenSCs was also comparable with that in differentiated BMSCs. However, the mRNA expression patterns as judged by RT-PCR of chondrogenic markers such as Collagen 2A1, Collagen 9A1 and SOX9 in MenSCs were different from those in BMSCs. Given these findings, MenSCs appear to be a unique stem cell population with higher proliferation than and comparable chondrogenic differentiation ability to BMSCs in two-dimensional culture. Much quantitative studies at the molecular level may elucidate the reasons for the observed differences in MenSCs and BMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang KY, Cheng LW, Ho GH, Huang YP, Lee YD. Fabrication and characterization of poly(c-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Acta Biomater. 2009;5:1937–47. doi:10.1016/j.actbio.2009.02.002.

    Article  PubMed  CAS  Google Scholar 

  2. Henningson CT Jr, Stanislaus MA, Gewirtz AM. Embryonic and adult stem cell therapy. J Allergy Clin Immunol. 2003;111:S745–53. doi:10.1067/mai.2003.133.

    Article  PubMed  Google Scholar 

  3. Merceron CH, Portron S, Masson M, Lesoeur J, Fellah BH, Gauthier O et al. The effect of two and three dimensional cell culture on the chondrogenic potential of human adipose-derived mesenchymal stem cells after subcutaneous transplantation with an injectable hydrogel. Cell Transplant. 2011;20:1575–88. doi:org/10.3727/096368910X557191

    Google Scholar 

  4. Mauro A, Turriani M, Ioannoni A, Russo V, Martelli A, Di Giacinto O, et al. Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells. Vet Res Commun. 2010;34:S25–8. doi:10.1007/s11259-010-9393-2.

    Article  PubMed  Google Scholar 

  5. Kim MH, Zhang HZ, Kim SW. Combined growth factors enhanced angiogenic potential of cord blood-derived mononuclear cells transplanted to ischemic limbs. J Mol Cell Cardiol. 2011;51:702–12. doi:10.1016/j.yjmcc.2011.07.006.

    Article  PubMed  CAS  Google Scholar 

  6. Dawson JI, Wahl DA, Lanham SA, Kanczler JM, Czernuszka JT, Oreffo RO. Development of specific Collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells. Biomaterials. 2008;29:3105–16. doi:10.1016/j.biomaterials.2008.03.040.

    Article  PubMed  CAS  Google Scholar 

  7. Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod. 2010;16:818–34. doi:10.1093/molehr/gaq061.

    Article  PubMed  CAS  Google Scholar 

  8. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007;5:57–66. doi:10.1186/1479-5876-5-57.

    Article  PubMed  CAS  Google Scholar 

  9. Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant. 2008;17:303–11.

    Article  PubMed  Google Scholar 

  10. Zhang MJ, Liu B, Xia W, Sun ZY, Lu KH. Could cells from menstrual blood be a new source for cell-based therapies? Med Hypotheses. 2009;72:252–4. doi:10.1016/j.mehy.2008.10.021.

    Article  PubMed  Google Scholar 

  11. Cui CH, Uyama T, Miyado K, Terai M, Kyo S, Kiyono T, et al. Menstrual blood-derived cells confer human dystrophin expression in the murine model of duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation. Mol Biol Cell. 2007;18:1586–94. doi:10.1091/mbc.E06-09-0872.

    Article  PubMed  CAS  Google Scholar 

  12. Allikson JG, Sanchez A, Yefimenko N, Borlongon CV, Sanberg PR. Recent studies assessing the proliferative capacity of a novel adult stem cell identified in menstrual blood. Open Stem Cell J. 2011;3:4–10. doi:10.2174/1876893801103010004.

    Article  Google Scholar 

  13. Borlongan CV, Kaneko Y, Maki M, Yu SJ, Ali M, Allickson JG, et al. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev. 2010;19:439–52. doi:10.1089/scd.2009.0340.

    Article  PubMed  CAS  Google Scholar 

  14. Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mensenchymal cells. Stem cells. 2008;26:1695–704. doi:10.1634/stemcells.2007-0826.

    Article  PubMed  CAS  Google Scholar 

  15. Zhong Z, Patel AN, Ichim TE, Riordan NH, Wang H, Min WP, et al. Feasibility investigation of allogeneic endometrial regenerative cells. J Transl Med. 2009;7:15–21. doi:10.1186/1479-5876-7-15.

    Article  PubMed  Google Scholar 

  16. Kazemnejad S, Allameh A, Gharehbaghian A, Soleimani M, Amirizadeh N, Jazayeri M. Efficient replacing of fetal bovine serum with human platelet releasate during propagation and differentiation of human bone marrow derived mesenchymal stem cells to functional hepatocytes-like cells. Vox Sang. 2008;95:149–58. doi:10.1111/j.1423-0410.2008.01075.x.

    Article  PubMed  CAS  Google Scholar 

  17. Kazemnejad S, Allameh A, Soleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N, et al. Functional hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel 3-dimensional biocompatible nanofibrous scaffold. Int J Artif Organs. 2008;31:500–7.

    PubMed  CAS  Google Scholar 

  18. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi:10.1016/0022-1759(83)90303-4.

    Article  PubMed  CAS  Google Scholar 

  19. Kazemnejad S, Akhondi MA, Soleimani M, Zarnani AM, Khanmohammadi M, Darzi S, et al. Characterization and chondrogenic differentiation of menstrual blood-derived stem cells on a nanofibrous scaffold. Int J Artif Organs. 2012;31:55–66. doi:10.5301/ijao.5000019.

    Google Scholar 

  20. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998;4:415–28.

    Article  PubMed  CAS  Google Scholar 

  21. Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986;883:173–7. doi:10.1016/0304-4165(86)90306-5.

    Article  PubMed  CAS  Google Scholar 

  22. Nikoo S, Ebtekar M, Jeddi-Tehrani M, Shervin A, Bozorgmehr M, Kazemnejad S, et al. Effect of menstrual blood-derived stromal stem cells on proliferative capacity of peripheral blood mononuclear cells in allogeneic mixed lymphocyte reaction. J Obstet Gynaecol Res. 2011. doi:10.1111/j.1447-0756.2011.01800.x.

  23. Matsuda C, Takagi M, Hattori T, Wakitani S, Yoshida T. Differentiation of human bone marrow mesenchymal stem cells to chondrocytes for construction of three-dimensional cartilage tissue. Cytotechnology. 2005;47:11–7. doi:10.1007/s10616-005-3751-x.

    Article  PubMed  Google Scholar 

  24. Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res. 2005;320:269–76. doi:10.1007/s00441-004-1075-3.

    Article  PubMed  CAS  Google Scholar 

  25. Fernandes H, Mentink A, Bank R, Stoop R, van Blitterswijk C, de Boer J. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells. Tissue Eng Part A. 2010;16:1693–702. doi:10.1089/ten.tea.2009.0341.

    Article  PubMed  CAS  Google Scholar 

  26. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol. 2005;203:398–409. doi:10.1002/jcp.20238.

    Article  PubMed  CAS  Google Scholar 

  27. Tew SR, Murdoch AD, Rauchenberg RP, Hardingham TE. Cellular methods in cartilage research: Primary human chondrocytes in culture and chondrogenesis in human bone marrow stem cells. Methods. 2008;45:2–9. doi:10.1016/j.ymeth.2008.01.006.

    Article  PubMed  CAS  Google Scholar 

  28. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22:85–9. doi:10.1038/8792.

    Article  PubMed  CAS  Google Scholar 

  29. Murdoch AD, Grady LM, Ablett MP, Katopodi T, Meadows RS, Hardingham TE. Chondrogenic Differentiation of Human Bone Marrow Stem Cells in Transwell Cultures: Generation of Scaffold-Free Cartilage. Stem cells. 2007;25:2786–96. doi:10.1634/stemcells.2007-0374.

    Article  PubMed  CAS  Google Scholar 

  30. Aigner T, Stove J. Collagens-major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev. 2003;55:1569–93. doi:10.1016/j.addr.2003.08.009.

    Article  PubMed  CAS  Google Scholar 

  31. Worster AA, Brower-Toland BD, Fortier LA, Bent SJ, Williams J, Nixon AJ. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-β1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J Orthop Res. 2001;19:738–49. doi:10.1016/S0736-0266(00)00054-1.

    Article  PubMed  CAS  Google Scholar 

  32. Tsuchiya H, Kitoh H, Sugiura F, Ishiguro N. Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2003;301:338–43. doi:10.1016/S0006-291X(02)03026-7.

    Article  PubMed  CAS  Google Scholar 

  33. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268:189–200. doi:10.1006/excr.2001.5278.

    Article  PubMed  CAS  Google Scholar 

  34. Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther. 2008;10:223–34. doi:10.1186/ar2514.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank from the Iranian Council of Stem Cell Technology for providing research grant for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaieh Kazemnejad.

Additional information

The authors M. Khanmohammadi, S. Khanjani contributed equally to the manuscript.

About this article

Cite this article

Khanmohammadi, M., Khanjani, S., Bakhtyari, M.S. et al. Proliferation and chondrogenic differentiation potential of menstrual blood- and bone marrow-derived stem cells in two-dimensional culture. Int J Hematol 95, 484–493 (2012). https://doi.org/10.1007/s12185-012-1067-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1067-0

Keywords

Navigation