Skip to main content

Advertisement

Log in

Cardiovascular Risk in Children and Adolescents with Type 1 and Type 2 Diabetes Mellitus

  • Pediatrics (SS Gidding, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Rising rates of both type 1 and type 2 diabetes mellitus in children have led to increased concern regarding cardiovascular disease (CVD) risk during childhood. Diabetic children face prolonged exposure to hyperglycemia, and have increased risk of both microvascular and macrovascular disease. These circumstances may result in a generation of young adults presenting with cardiovascular outcomes, a tremendous personal and public health toll. In this article, we review CVD risk in type 1 and type 2 diabetes, discuss aspects of pathophysiology, and review current methods of CVD risk assessment. We also identify crucial areas in need of future research in order to devise effective prevention and treatment of CVD risk in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Incidence and trends of childhood Type 1 diabetes worldwide 1990–1999. Diabet Med. 2006;23(8):857–66.

    Google Scholar 

  2. Vehik K, Hamman RF, Lezotte D, Norris JM, Klingensmith G, Bloch C, et al. Increasing incidence of type 1 diabetes in 0- to 17-year-old Colorado youth. Diabetes Care. 2007;30(3):503–9.

    Article  PubMed  Google Scholar 

  3. Variation and trends in incidence of childhood diabetes in Europe. EURODIAB ACE Study Group. Lancet. 2000;355(9207):873–6.

    Article  Google Scholar 

  4. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM, et al. Prevalence of overweight and obesity in the United States, 1999–2004. Jama. 2006;295(13):1549–55.

    Article  PubMed  CAS  Google Scholar 

  5. Pinhas-Hamiel O, Dolan LM, Daniels SR, Standiford D, Khoury PR, Zeitler P. Increased incidence of non-insulin-dependent diabetes mellitus among adolescents. J Pediatr. 1996;128(5 Pt 1):591. Journal of Pediatrics. 1996;128(5 Pt 1):608–15.

    Google Scholar 

  6. Anonymous. Type 2 diabetes in children and adolescents. American Diabetes Association. Diabetes Care. 2000;23(3):381–9.

    Article  Google Scholar 

  7. Liese AD, D'Agostino Jr RB, Hamman RF, Kilgo PD, Lawrence JM, Liu LL, et al. The burden of diabetes mellitus among US youth: Prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics. 2006;118(4):1510–8.

    Article  PubMed  Google Scholar 

  8. American Academy of Pediatrics. National cholesterol education program: Report of the expert panel on blood cholesterol levels in children and adolescents. Pediatrics. 1992;89(3 Pt 2):525–84.

    Google Scholar 

  9. Juutilainen A, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Type 2 diabetes as a "coronary heart disease equivalent": An 18-year prospective population-based study in Finnish subjects. Diabetes Care. 2005;28(12):2901–7.

    Article  PubMed  Google Scholar 

  10. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman 3rd WP, Herderick EE, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: Implications for prevention from the pathobiological determinants of atherosclerosis in youth study. Jama. 1999;281(8):727–35.

    Article  PubMed  CAS  Google Scholar 

  11. McGill Jr HC, McMahan CA, Herderick EE, Zieske AW, Malcom GT, Tracy RE, et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002;105(23):2712–8.

    Article  PubMed  Google Scholar 

  12. Berenson GS, Srinivasan SR, Bao W, Newman 3rd WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338(23):1650–6.

    Article  PubMed  CAS  Google Scholar 

  13. Freedman DS, Dietz WH, Tang R, Mensah GA, Bond MG, Urbina EM, et al. The relation of obesity throughout life to carotid intima-media thickness in adulthood: The Bogalusa Heart Study. Int J Obes Relat Metab Disord. 2004;28(1):159–66.

    Article  PubMed  CAS  Google Scholar 

  14. Mahoney LT, Burns TL, Stanford W, Thompson BH, Witt JD, Rost CA, et al. Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: The muscatine study. J Am Coll Cardiol. 1996;27(2):277–84.

    Article  PubMed  CAS  Google Scholar 

  15. Raitakari OT, Juonala M, Kahonen M, Taittonen L, Laitinen T, Maki-Torkko N, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: The cardiovascular risk in young finns study. Jama. 2003;290(17):2277–83.

    Article  PubMed  CAS  Google Scholar 

  16. Krolewski AS, Kosinski EJ, Warram JH, Leland OS, Busick EJ, Asmal AC, et al. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol. 1987;59(8):750–5.

    Article  PubMed  CAS  Google Scholar 

  17. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  18. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53. PMCID: 2637991.

    Article  PubMed  Google Scholar 

  19. Nathan DM, Lachin J, Cleary P, Orchard T, Brillon DJ, Backlund JY. Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N Engl J Med. 2003;348(23):2294–303. PMCID: 2701300.

    Article  PubMed  Google Scholar 

  20. Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: A mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999;84(5):489–97.

    Article  PubMed  CAS  Google Scholar 

  21. Libby P, Plutzky J. Diabetic macrovascular disease: The glucose paradox? Circulation. 2002;106(22):2760–3.

    Article  PubMed  Google Scholar 

  22. Snell-Bergeon JK, Hokanson JE, Jensen L, MacKenzie T, Kinney G, Dabelea D, et al. Progression of coronary artery calcification in type 1 diabetes: The importance of glycemic control. Diabetes Care. 2003;26(10):2923–8.

    Article  PubMed  Google Scholar 

  23. Shamir R, Kassis H, Kaplan M, Naveh T, Shehadeh N. Glycemic control in adolescents with type 1 diabetes mellitus improves lipid serum levels and oxidative stress. Pediatr Diabetes. 2008;9(2):104–9.

    Article  PubMed  CAS  Google Scholar 

  24. Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce Jr WM, Klein JB, et al. Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab. 2004;287(5):E896–905.

    Article  PubMed  CAS  Google Scholar 

  25. • Schauer IE, Snell-Bergeon JK, Bergman BC, Maahs DM, Kretowski A, Eckel RH, et al. Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: The CACTI study. Diabetes. 2011;60(1):306–14. PMCID: 3012187. This study used hyperinsulinemic euglycemic clamp studies to illustrate increased insulin resistance among Type 1 diabetes which predicted increased coronary artery calcification.

    Article  PubMed  CAS  Google Scholar 

  26. • Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95(2):513–21. PMCID: 2840859. This study investigated the effected of insulin resistance in children with type 1 diabetes.

    Article  PubMed  CAS  Google Scholar 

  27. Suys BE, Katier N, Rooman RP, Matthys D, Op De Beeck L, Du Caju MV, et al. Female children and adolescents with type 1 diabetes have more pronounced early echocardiographic signs of diabetic cardiomyopathy. Diabetes Care. 2004;27(8):1947–53.

    Article  PubMed  Google Scholar 

  28. Moss SE, Klein R, Klein BE. Cause-specific mortality in a population-based study of diabetes. Am J Public Health. 1991;81(9):1158–62. PMCID: 1405646.

    Article  PubMed  CAS  Google Scholar 

  29. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16(2):434–44.

    Article  PubMed  CAS  Google Scholar 

  30. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.

    Article  PubMed  CAS  Google Scholar 

  31. Boyd GS, Koenigsberg J, Falkner B, Gidding S, Hassink S. Effect of obesity and high blood pressure on plasma lipid levels in children and adolescents. Pediatrics. 2005;116(2):442–6.

    Article  PubMed  Google Scholar 

  32. Invitti C, Guzzaloni G, Gilardini L, Morabito F, Viberti G. Prevalence and concomitants of glucose intolerance in European obese children and adolescents. Diabetes Care. 2003;26(1):118–24.

    Article  PubMed  Google Scholar 

  33. Davis CL, Flickinger B, Moore D, Bassali R, Domel Baxter S, Yin Z, et al. Prevalence of cardiovascular risk factors in schoolchildren in a rural Georgia community. American Journal of the Medical Sciences. 2005;330(2):53–9.

    Article  PubMed  Google Scholar 

  34. Gerich JE. Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Intern Med. 2003;163(11):1306–16.

    Article  PubMed  CAS  Google Scholar 

  35. Leahy JL. Pathogenesis of Type 2 Diabetes Mellitus. Archives of Medical Research Current Trends in Diabetes. 2005;36(3):197–209.

    CAS  Google Scholar 

  36. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.

    Article  Google Scholar 

  37. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  PubMed  CAS  Google Scholar 

  38. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. Bmj. 2000;321(7258):405–12.

    Article  PubMed  CAS  Google Scholar 

  39. Stettler C, Allemann S, Juni P, Cull CA, Holman RR, Egger M, et al. Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: Meta-analysis of randomized trials. Am Heart J. 2006;152(1):27–38.

    Article  PubMed  CAS  Google Scholar 

  40. Eppens MC, Craig ME, Cusumano J, Hing S, Chan AK, Howard NJ, et al. Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care. 2006;29(6):1300–6.

    Article  PubMed  Google Scholar 

  41. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143–421.

    Google Scholar 

  42. Kwiterovich Jr PO. The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and triglycerides: A current review. Am J Cardiol. 2000;86(12A):5L–10.

    Article  PubMed  CAS  Google Scholar 

  43. Petitti DB, Imperatore G, Palla SL, Daniels SR, Dolan LM, Kershnar AK, et al. Serum lipids and glucose control: The SEARCH for diabetes in youth study. Arch Pediatr Adolesc Med. 2007;161(2):159–65.

    Article  PubMed  Google Scholar 

  44. •• Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics. 2011;128 Suppl 5:S213-56. These guidelines by the NHLBI recommend more aggressive lipid cut-offs for children, and recognize both type 1 and type 2 diabetes as conditions associated with accelerated atherosclerosis.

  45. Kavey RE, Allada V, Daniels SR, Hayman LL, McCrindle BW, Newburger JW, et al. Cardiovascular risk reduction in high-risk pediatric patients: A scientific statement from the American heart association expert panel on population and prevention science; The councils on cardiovascular disease in the young, epidemiology and prevention, nutrition, physical activity and metabolism, high blood pressure research, cardiovascular nursing, and the kidney in heart disease; and the interdisciplinary working group on quality of care and outcomes research: Endorsed by the american academy of pediatrics. Circulation. 2006;114(24):2710–38.

    Article  PubMed  Google Scholar 

  46. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  47. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon 3rd RO, Criqui M, et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the centers for disease control and prevention and the american heart association. Circulation. 2003;107(3):499–511.

    Article  PubMed  Google Scholar 

  48. Miller J, Rosenbloom A, Silverstein J. Childhood obesity. J Clin Endocrinol Metab. 2004;89(9):4211–8.

    Article  PubMed  CAS  Google Scholar 

  49. Reilly MP, Wolfe ML, Rhodes T, Girman C, Mehta N, Rader DJ. Measures of insulin resistance add incremental value to the clinical diagnosis of metabolic syndrome in association with coronary atherosclerosis. Circulation. 2004;110(7):803–9.

    Article  PubMed  CAS  Google Scholar 

  50. National Cholesterol Education Program (NCEP). Highlights of the report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents. Pediatrics. 1992;89(3):495–501.

    Google Scholar 

  51. Rodriguez BL, Fujimoto WY, Mayer-Davis EJ, Imperatore G, Williams DE, Bell RA, et al. Prevalence of cardiovascular disease risk factors in U.S. children and adolescents with diabetes: The SEARCH for diabetes in youth study. Diabetes Care. 2006;29(8):1891–6.

    Article  PubMed  Google Scholar 

  52. Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch Pediatr Adolesc Med. 2003;157(8):821–7.

    Article  PubMed  Google Scholar 

  53. Standards of medical care in diabetes--2011. Diabetes Care. 2011;34 Suppl 1:S11-61. PMCID: 3006050.

    Google Scholar 

  54. Reh CM, Mittelman SD, Wee CP, Shah AC, Kaufman FR, Wood JR. A longitudinal assessment of lipids in youth with type 1 diabetes. Pediatr Diabetes. 2011;12(4 Pt 2):365–71.

    PubMed  CAS  Google Scholar 

  55. Frontini MG, Srinivasan SR, Xu JH, Tang R, Bond MG, Berenson G. Utility of non-high-density lipoprotein cholesterol versus other lipoprotein measures in detecting subclinical atherosclerosis in young adults (The Bogalusa Heart Study). Am J Cardiol. 2007;100(1):64–8.

    Article  PubMed  CAS  Google Scholar 

  56. Rainwater DL, McMahan CA, Malcom GT, Scheer WD, Roheim PS, McGill Jr HC, et al. Lipid and apolipoprotein predictors of atherosclerosis in youth: Apolipoprotein concentrations do not materially improve prediction of arterial lesions in PDAY subjects. The PDAY Research Group. Arterioscler Thromb Vasc Biol. 1999;19(3):753–61.

    Article  PubMed  CAS  Google Scholar 

  57. • Li C, Ford ES, McBride PE, Kwiterovich PO, McCrindle BW, Gidding SS. Non-high-density lipoprotein cholesterol concentration is associated with the metabolic syndrome among US youth aged 12–19 years. J Pediatr. 2011;158(2):201–7. This paper establishes non-HDL cut-offs for youth at increased risk for metabolic syndrome.

    Article  PubMed  CAS  Google Scholar 

  58. • Dalla Pozza R, Beyerlein A, Thilmany C, Weissenbacher C, Netz H, Schmidt H, et al. The effect of cardiovascular risk factors on the longitudinal evolution of the carotid intima medial thickness in children with type 1 diabetes mellitus. Cardiovasc Diabetol. 2011;10:53. PMCID: 3148557. One of the first longitudinal studies of progression of CIMT over time in youth with diabetes.

    Article  PubMed  Google Scholar 

  59. Shah AS, Dolan LM, Kimball TR, Gao Z, Khoury PR, Daniels SR, et al. Influence of duration of diabetes, glycemic control, and traditional cardiovascular risk factors on early atherosclerotic vascular changes in adolescents and young adults with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94(10):3740–5. PMCID: 2758732.

    Article  PubMed  CAS  Google Scholar 

  60. • Wadwa RP, Urbina EM, Anderson AM, Hamman RF, Dolan LM, Rodriguez BL, et al. Measures of arterial stiffness in youth with type 1 and type 2 diabetes: The SEARCH for diabetes in youth study. Diabetes Care. 2010;33(4):881–6. PMCID: 2845046. This manuscript compares arterial stiffness in youth with type 1 and type 2 diabetes.

    Article  PubMed  Google Scholar 

  61. Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes. 2003;52(2):453–62.

    Article  PubMed  CAS  Google Scholar 

  62. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990;82(2):495–506.

    Article  PubMed  CAS  Google Scholar 

  63. Freedman DS, Otvos JD, Jeyarajah EJ, Barboriak JJ, Anderson AJ, Walker JA. Relation of lipoprotein subclasses as measured by proton nuclear magnetic resonance spectroscopy to coronary artery disease. Arterioscler Thromb Vasc Biol. 1998;18(7):1046–53.

    Article  PubMed  CAS  Google Scholar 

  64. Perez-Mendez O, Torres-Tamayo M, Posadas-Romero C, Vidaure Garces V, Carreon-Torres E, Mendoza-Perez E, et al. Abnormal HDL subclasses distribution in overweight children with insulin resistance or type 2 diabetes mellitus. Clin Chim Acta. 2007;376(1–2):17–22.

    Article  PubMed  CAS  Google Scholar 

  65. Freedman DS, Bowman BA, Otvos JD, Srinivasan SR, Berenson GS. Levels and correlates of LDL and VLDL particle sizes among children: The Bogalusa heart study. Atherosclerosis. 2000;152(2):441–9.

    Article  PubMed  CAS  Google Scholar 

  66. • Burns SF, Lee SJ, Arslanian SA. Surrogate lipid markers for small dense low-density lipoprotein particles in overweight youth. J Pediatr. 2012. This paper identifies calculated indices predictive of increased small dense LDL, using a standard lipid panel. These indices may be useful in clinic al practice to identify children with increased CVD risk.

  67. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836–43.

    Article  PubMed  CAS  Google Scholar 

  68. Festa A, D'Agostino Jr R, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: The Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;102(1):42–7.

    Article  PubMed  CAS  Google Scholar 

  69. Mangge H, Schauenstein K, Stroedter L, Griesl A, Maerz W, Borkenstein M. Low grade inflammation in juvenile obesity and type 1 diabetes associated with early signs of atherosclerosis. Exp Clin Endocrinol Diabetes. 2004;112(7):378–82.

    Article  PubMed  CAS  Google Scholar 

  70. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350(23):2362–74.

    Article  PubMed  CAS  Google Scholar 

  71. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama. 2001;286(3):327–34.

    Article  PubMed  CAS  Google Scholar 

  72. Nesto R. C-reactive protein, its role in inflammation, Type 2 diabetes and cardiovascular disease, and the effects of insulin-sensitizing treatment with thiazolidinediones. Diabet Med. 2004;21(8):810–7.

    Article  PubMed  CAS  Google Scholar 

  73. Bullo M, Garcia-Lorda P, Megias I, Salas-Salvado J. Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res. 2003;11(4):525–31.

    Article  PubMed  CAS  Google Scholar 

  74. Dzienis-Straczkowska S, Straczkowski M, Szelachowska M, Stepien A, Kowalska I, Kinalska I. Soluble tumor necrosis factor-alpha receptors in young obese subjects with normal and impaired glucose tolerance. Diabetes Care. 2003;26(3):875–80.

    Article  PubMed  CAS  Google Scholar 

  75. Gupta A, Ten S, Anhalt H. Serum levels of soluble tumor necrosis factor-alpha receptor 2 are linked to insulin resistance and glucose intolerance in children. J Pediatr Endocrinol Metab. 2005;18(1):75–82.

    Article  PubMed  CAS  Google Scholar 

  76. Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. Jama. 2004;291(16):1978–86.

    Article  PubMed  CAS  Google Scholar 

  77. Miller J, Silverstein J. Cardiovascular risk factors in childhood diabetes. The Endocrinologist. 2003;13(5):394–407.

    Article  Google Scholar 

  78. Desideri G, De Simone M, Iughetti L, Rosato T, Iezzi ML, Marinucci MC, et al. Early activation of vascular endothelial cells and platelets in obese children. Journal of Clinical Endocrinology & Metabolism. 2005;90(6):3145–52.

    Article  CAS  Google Scholar 

  79. Vaughan DE. PAI-1 and atherothrombosis. J Thromb Haemost. 2005;3(8):1879–83.

    Article  PubMed  CAS  Google Scholar 

  80. Kougias P, Chai H, Lin PH, Yao Q, Lumsden AB, Chen C. Effects of adipocyte-derived cytokines on endothelial functions: Implication of vascular disease. J Surg Res. 2005;126(1):121–9.

    Article  PubMed  CAS  Google Scholar 

  81. Goldstein BJ, Scalia R. Adiponectin: A novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab. 2004;89(6):2563–8.

    Article  PubMed  CAS  Google Scholar 

  82. Antoniades C, Antonopoulos AS, Tousoulis D, Stefanadis C. Adiponectin: From obesity to cardiovascular disease. Obes Rev. 2009;10(3):269–79.

    Article  PubMed  CAS  Google Scholar 

  83. Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet. 2003;361(9353):226–8.

    Article  PubMed  CAS  Google Scholar 

  84. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: Adipocyte-derived plasma protein adiponectin. Circulation. 1999;100(25):2473–6.

    Article  PubMed  CAS  Google Scholar 

  85. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20(6):1595–9.

    Article  PubMed  CAS  Google Scholar 

  86. Weiss R, Taksali SE, Dufour S, Yeckel CW, Papademetris X, Cline G, et al. The "obese insulin-sensitive" adolescent: Importance of adiponectin and lipid partitioning. J Clin Endocrinol Metab. 2005;90(6):3731–7.

    Article  PubMed  CAS  Google Scholar 

  87. Morales A, Wasserfall C, Brusko T, Carter C, Schatz D, Silverstein J, et al. Adiponectin and leptin concentrations may aid in discriminating disease forms in children and adolescents with type 1 and type 2 diabetes. Diabetes Care. 2004;27(8):2010–4.

    Article  PubMed  CAS  Google Scholar 

  88. Magge SN, Stettler N, Koren D, Levitt Katz LE, Gallagher PR, Mohler 3rd ER, et al. Adiponectin Is Associated with Favorable Lipoprotein Profile, Independent of BMI and Insulin Resistance, in Adolescents. J Clin Endocrinol Metab. 2011;96(5):1549–54. PMCID: 3085202.

    Article  PubMed  CAS  Google Scholar 

  89. Beauloye V, Zech F, Tran HT, Clapuyt P, Maes M, Brichard SM. Determinants of early atherosclerosis in obese children and adolescents. J Clin Endocrinol Metab. 2007;92(8):3025–32.

    Article  PubMed  CAS  Google Scholar 

  90. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  PubMed  CAS  Google Scholar 

  91. Beltowski J. Leptin and atherosclerosis. Atherosclerosis. 2006;189(1):47–60.

    Article  PubMed  CAS  Google Scholar 

  92. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5.

    Article  PubMed  CAS  Google Scholar 

  93. Wallace AM, McMahon AD, Packard CJ, Kelly A, Shepherd J, Gaw A, et al. Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation. 2001;104(25):3052–6.

    Article  PubMed  CAS  Google Scholar 

  94. Ciccone M, Vettor R, Pannacciulli N, Minenna A, Bellacicco M, Rizzon P, et al. Plasma leptin is independently associated with the intima-media thickness of the common carotid artery. Int J Obes Relat Metab Disord. 2001;25(6):805–10.

    Article  PubMed  CAS  Google Scholar 

  95. Targher G, Bertolini L, Padovani R, Zenari L, Scala L, Cigolini M, et al. Serum 25-hydroxyvitamin D3 concentrations and carotid artery intima-media thickness among type 2 diabetic patients. Clin Endocrinol (Oxf). 2006;65(5):593–7.

    Article  CAS  Google Scholar 

  96. Diaz VA, Mainous 3rd AG, Carek PJ, Wessell AM, Everett CJ. The association of vitamin D deficiency and insufficiency with diabetic nephropathy: Implications for health disparities. J Am Board Fam Med. 2009;22(5):521–7.

    Article  PubMed  Google Scholar 

  97. Kaur H, Donaghue KC, Chan AK, Benitez-Aguirre P, Hing S, Lloyd M. Vitamin D deficiency is associated with retinopathy in children and adolescents with type 1 diabetes. Diabetes Care. 2011;34(6):1400–2. PMCID: 3114351.

    Article  PubMed  Google Scholar 

  98. •• Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension. 2009;54(5):919–50. Scientific statement by the AHA describing the methodology for non-invasive vascular imaging techniques to assess CVD risk, and identifying gaps in the scientific evidence warranting further research.

    Article  PubMed  CAS  Google Scholar 

  99. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction: The rotterdam study. Circulation. 1997;96(5):1432–7.

    Article  PubMed  CAS  Google Scholar 

  100. Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: The Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol. 1997;146(6):483–94.

    Article  PubMed  CAS  Google Scholar 

  101. Leinonen ES, Hiukka A, Hurt-Camejo E, Wiklund O, Sarna SS. Mattson Hulten L, et al. Low-grade inflammation, endothelial activation and carotid intima-media thickness in type 2 diabetes. Journal of Internal Medicine. 2004;256(2):119–27.

    Article  PubMed  CAS  Google Scholar 

  102. Esposito K, Giugliano D, Nappo F, Marfella R. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation. 2004;110(2):214–9.

    Article  PubMed  CAS  Google Scholar 

  103. Langenfeld MR, Forst T, Hohberg C, Kann P, Lubben G, Konrad T, et al. Pioglitazone decreases carotid intima-media thickness independently of glycemic control in patients with type 2 diabetes mellitus: Results from a controlled randomized study. Circulation. 2005;111(19):2525–31.

    Article  PubMed  CAS  Google Scholar 

  104. Meyer AA, Kundt G, Steiner M, Schuff-Werner P, Kienast W. Impaired flow-mediated vasodilation, carotid artery intima-media thickening, and elevated endothelial plasma markers in obese children: The impact of cardiovascular risk factors. Pediatrics. 2006;117(5):1560–7.

    Article  PubMed  Google Scholar 

  105. Zhu W, Li M, Huang X, Neubauer H. Association of hyperviscosity and subclinical atherosclerosis in obese schoolchildren. European Journal of Pediatrics. 2005;164(10):639–45.

    Article  PubMed  Google Scholar 

  106. Stabouli S, Kotsis V, Papamichael C, Constantopoulos A, Zakopoulos N. Adolescent obesity is associated with high ambulatory blood pressure and increased carotid intimal-medial thickness. The Journal of Pediatrics. 2005;147(5):651–6.

    Article  PubMed  Google Scholar 

  107. Jarvisalo MJ, Putto-Laurila A, Jartti L, Lehtimaki T, Solakivi T, Ronnemaa T, et al. Carotid artery intima-media thickness in children with type 1 diabetes. Diabetes. 2002;51(2):493–8.

    Article  PubMed  CAS  Google Scholar 

  108. Peppa-Patrikiou M, Scordili M, Antoniou A, Giannaki M, Dracopoulou M, Dacou-Voutetakis C. Carotid atherosclerosis in adolescents and young adults with IDDM. Relation to urinary endothelin, albumin, free cortisol, and other factors. Diabetes Care. 1998;21(6):1004–7.

    Article  PubMed  CAS  Google Scholar 

  109. Krantz JS, Mack WJ, Hodis HN, Liu CR, Liu CH, Kaufman FR, et al. Early onset of subclinical atherosclerosis in young persons with type 1 diabetes. Journal of Pediatrics. 2004;145(4):452–7.

    Article  PubMed  Google Scholar 

  110. Singh TP, Groehn H, Kazmers A. Vascular function and carotid intimal-medial thickness in children with insulin-dependent diabetes mellitus. J Am Coll Cardiol. 2003;41(4):661–5.

    Article  PubMed  Google Scholar 

  111. Parikh A, Sochett EB, McCrindle BW, Dipchand A, Daneman A, Daneman D. Carotid artery distensibility and cardiac function in adolescents with type 1 diabetes. J Pediatr. 2000;137(4):465–9.

    Article  PubMed  CAS  Google Scholar 

  112. Babar GS, Zidan H, Widlansky ME, Das E, Hoffmann RG, Daoud M, et al. Impaired endothelial function in preadolescent children with type 1 diabetes. Diabetes Care. 2011;34(3):681–5. PMCID: 3041207.

    Article  PubMed  CAS  Google Scholar 

  113. Margeirsdottir HD, Stensaeth KH, Larsen JR, Brunborg C, Dahl-Jorgensen K. Early signs of atherosclerosis in diabetic children on intensive insulin treatment: a population-based study. Diabetes Care. 2010;33(9):2043–8. PMCID: 2928360.

    Article  PubMed  CAS  Google Scholar 

  114. Krebs A, Schmidt-Trucksass A, Doerfer J, Grulich-Henn J, Holder M, Hecker W, et al. Cardiovascular risk in pediatric type 1 diabetes: Sex-specific intima-media thickening verified by automatic contour identification and analyzing systems. Pediatr Diabetes. 2012;13(3):251–8.

    Article  PubMed  CAS  Google Scholar 

  115. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340(8828):1111–5.

    Article  PubMed  CAS  Google Scholar 

  116. Jarvisalo MJ, Ronnemaa T, Volanen I, Kaitosaari T, Kallio K, Hartiala JJ, et al. Brachial artery dilatation responses in healthy children and adolescents. Am J Physiol Heart Circ Physiol. 2002;282(1):H87–92.

    PubMed  CAS  Google Scholar 

  117. Faulx MD, Wright AT, Hoit BD. Detection of endothelial dysfunction with brachial artery ultrasound scanning. Am Heart J. 2003;145(6):943–51.

    Article  PubMed  Google Scholar 

  118. Tounian P, Aggoun Y, Dubern B, Varille V, Guy-Grand B, Sidi D, et al. Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: A prospective study. Lancet. 2001;358(9291):1400–4.

    Article  PubMed  CAS  Google Scholar 

  119. Watts K, Beye P, Siafarikas A, Davis EA, Jones TW, O'Driscoll G, et al. Exercise training normalizes vascular dysfunction and improves central adiposity in obese adolescents. J Am Coll Cardiol. 2004;43(10):1823–7.

    Article  PubMed  Google Scholar 

  120. Jarvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, Laine S, et al. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation. 2004;109(14):1750–5.

    Article  PubMed  Google Scholar 

  121. Battelino N, Sebestjen M, Keber I, Blagus R, Hovnik T, Bratina N, et al. Endothelial nitric oxide synthase T(−786)C polymorphism in children and adolescents with type 1 diabetes and impaired endothelium-dependent dilatation. Horm Res Paediatr. 2011;76(4):248–53.

    Article  PubMed  CAS  Google Scholar 

  122. Aggoun Y, Szezepanski I, Bonnet D. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events in children. Pediatr Res. 2005;58(2):173–8.

    Article  PubMed  Google Scholar 

  123. Wildman RP, Mackey RH, Bostom A, Thompson T, Sutton-Tyrrell K. Measures of obesity are associated with vascular stiffness in young and older adults. Hypertension. 2003;42(4):468–73.

    Article  PubMed  CAS  Google Scholar 

  124. Gungor N, Thompson T, Sutton-Tyrrell K, Janosky J, Arslanian S, Full N, et al. Early signs of cardiovascular disease in youth with obesity and type 2 diabetes. Diabetes Care. 2005;28(5):1219–21.

    Article  PubMed  Google Scholar 

  125. Urbina EM, Wadwa RP, Davis C, Snively BM, Dolan LM, Daniels SR, et al. Prevalence of increased arterial stiffness in children with type 1 diabetes mellitus differs by measurement site and sex: The SEARCH for diabetes in youth study. J Pediatr. 2010;156(5):731–7. 7 e1.

    Article  PubMed  Google Scholar 

  126. Collins RT, Somes GW, Alpert BS. Differences in arterial compliance among normotensive adolescent groups: Collins arterial compliance in adolescents. Pediatr Cardiol. 2008;29(5):929–34.

    Article  PubMed  Google Scholar 

  127. Reusz GS, Cseprekal O, Temmar M, Kis E, Cherif AB, Thaleb A, et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. 2010;56(2):217–24.

    Article  PubMed  CAS  Google Scholar 

  128. Shah AS, Dolan LM, Gao Z, Kimball TR, Urbina EM. Racial differences in arterial stiffness among adolescents and young adults with type 2 diabetes. Pediatr Diabetes. 2012;13(2):170–5. PMCID: 3210878.

    Article  PubMed  CAS  Google Scholar 

  129. Gunczler P, Lanes R, Soros A, Verdu L, Ramon Y, Guevara B, et al. Coronary artery calcification, serum lipids, lipoproteins, and peripheral inflammatory markers in adolescents and young adults with type 1 diabetes. J Pediatr. 2006;149(3):320–3.

    Article  PubMed  CAS  Google Scholar 

  130. Starkman HS, Cable G, Hala V, Hecht H, Donnelly CM. Delineation of prevalence and risk factors for early coronary artery disease by electron beam computed tomography in young adults with type 1 diabetes. Diabetes Care. 2003;26(2):433–6.

    Article  PubMed  Google Scholar 

  131. Chinali M, de Simone G, Roman MJ, Lee ET, Best LG, Howard BV, et al. Impact of obesity on cardiac geometry and function in a population of adolescents: The strong heart study. J Am Coll Cardiol. 2006;47(11):2267–73.

    Article  PubMed  Google Scholar 

  132. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–6.

    Article  PubMed  CAS  Google Scholar 

  133. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114(5):345–52.

    PubMed  CAS  Google Scholar 

  134. Li X, Li S, Ulusoy E, Chen W, Srinivasan SR, Berenson GS. Childhood adiposity as a predictor of cardiac mass in adulthood: The bogalusa heart study. Circulation. 2004;110(22):3488–92.

    Article  PubMed  Google Scholar 

  135. Urbina EM, Gidding SS, Bao W, Pickoff AS, Berdusis K, Berenson GS. Effect of body size, ponderosity, and blood pressure on left ventricular growth in children and young adults in the Bogalusa Heart Study. Circulation. 1995;91(9):2400–6.

    Article  PubMed  CAS  Google Scholar 

  136. Crowley DI, Khoury PR, Urbina EM, Ippisch HM, Kimball TR. Cardiovascular impact of the pediatric obesity epidemic: Higher left ventricular mass is related to higher body mass index. J Pediatr. 2011;158(5):709–14.

    Article  PubMed  Google Scholar 

  137. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr. 2009;22(6):709–14.

    Article  PubMed  Google Scholar 

  138. Benitez-Aguirre P, Craig ME, Sasongko MB, Jenkins AJ, Wong TY, Wang JJ, et al. Retinal vascular geometry predicts incident retinopathy in young people with type 1 diabetes: A prospective cohort study from adolescence. Diabetes Care. 2011;34(7):1622–7. PMCID: 3120178.

    Article  PubMed  Google Scholar 

  139. Benitez-Aguirre PZ, Sasongko MB, Craig ME, Jenkins AJ, Cusumano J, Cheung N, et al. Retinal vascular geometry predicts incident renal dysfunction in young people with type 1 diabetes. Diabetes Care. 2012;35(3):599–604. PMCID: 3322713.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela N. Magge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magge, S.N. Cardiovascular Risk in Children and Adolescents with Type 1 and Type 2 Diabetes Mellitus. Curr Cardiovasc Risk Rep 6, 591–600 (2012). https://doi.org/10.1007/s12170-012-0274-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-012-0274-9

Keywords

Navigation