Skip to main content
Log in

Multivariate Optimization for the Development of a Fast and Simple Ultrasound-Assisted Extraction Procedure for Multielemental Determination in Tea Leaves by Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES)

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

The current study describes a fast and efficient procedure of ultrasound-assisted extraction for determination of Ca, Mg, K, Na, Cu, Zn, Mn, and Al in tea leaves by inductively coupled plasma optical emission spectrometry (ICP OES). The variables of procedure were optimized using the Box–Behnken design and the conditions selected were nitric acid concentration (1.0 mol L−1), sonication time (7 min), and sonication temperature (75 °C). The extraction efficiency was calculated using the analyte concentration obtained by a total digestion procedure as reference. Accuracy was confirmed by analysis of certified reference material of apple leaves (NIST 1515) and spinach leaves (NIST 1570a) using the procedure proposed. A statistical evaluation using Student’s t test showed that there is no significant difference between the value obtained with the proposed procedure and the certified value, at 95% confidence level. The proposed procedure was successfully applied and is a good alternative to conventional acid digestion procedure and can be applied to routine analysis for determination of Ca, Mg, K, Na, Zn, Mn, Cu, and Al in tea leaves used for the preparation of infusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amorim FAC, Costa VC, Guedes WN, Sá IP, Santos MC, Silva EGP, Lima DC (2016) Multivariate optimization of method of slurry sampling for determination of iron and zinc in starch samples by flame atomic absorption spectrometry. Food Anal Methods 9(6):1719–1726. https://doi.org/10.1007/s12161-015-0296-2

    Article  Google Scholar 

  • Amorim FAC, Costa VC, Silva EGP, Lima DC, Jesus RM, Bezerra MA (2017) Multivariate optimization of simple procedure for determination of Fe and Mg in cassava starch employing slurry sampling and FAAS. Food Chem 227:41–47. https://doi.org/10.1016/j.foodchem.2016.12.029

    Article  CAS  PubMed  Google Scholar 

  • Andrade DF, Pereira-Filho ER, Konieczynski P (2017) Comparison of ICP OES and LIBS analysis of medicinal herbs rich in flavonoids from eastern Europe. J Braz Chem Soc 28:838–847

    CAS  Google Scholar 

  • ANVISA – Agência Nacional de Vigilância Sanitária. Resolução RDC n° 269, de 22 de setembro de 2005. Available in: http://portal.anvisa. gov.br/wps/wcm/connect/1884970047457811857dd53fbc4c6735/RDC_269_2005.pdf? MOD=AJPERES. Accessed 15 Nov 2017

  • Armenta S, Garrigues S, De la Guardia M (2015) The role of green extraction techniques in green analytical chemistry. Trends Anal Chem 71:2–8

    Article  CAS  Google Scholar 

  • Ashraf W, Mian AA (2008) Levels of selected heavy metals in black tea varieties consumed in Saudi Arabia. Bull Environ Contam Toxicol 81(1):101–104. https://doi.org/10.1007/s00128-008-9402-0

    Article  CAS  PubMed  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  • Bezerra MA, Castro JT, Macedo RC, Da Silva DG (2010) Use of constrained mixture design for optimization of method for determination of zinc and manganese in tea leaves employing slurry sampling. Anal Chim Acta 670(1-2):33–38. https://doi.org/10.1016/j.aca.2010.04.063

    Article  CAS  PubMed  Google Scholar 

  • Bezerra MA, Dos Santos QO, Santos AG, Novaes CG, Ferreira SLC, De Souza VS (2016) Simplex optimization: a tutorial approach and recent applications in analytical chemistry. Microchem J 124:45–46. https://doi.org/10.1016/j.microc.2015.07.023

    Article  CAS  Google Scholar 

  • Capote FP, De Castro MDL (2007) Ultrasound in analytical chemistry. Anal Bioanal Chem 387:249–257

    Article  CAS  Google Scholar 

  • Castro MDL, Silva MP (1997) Strategies for solid sample treatment. Trends Anal. Chem 16:16–24

    Article  Google Scholar 

  • Chen Y, Yu M, Xu J, Chen X, Shi J (2009) Differentiation of eight tea (Camellia Sinensis) cultivars in China by elemental fingerprint of their leaves. J Sci Food Agr 89(14):2350–2355. https://doi.org/10.1002/jsfa.3716

    Article  CAS  Google Scholar 

  • Da Silva Pinto M (2013) Tea: a new perspective on health benefits. Food Res Int 53(2):558–567. https://doi.org/10.1016/j.foodres.2013.01.038

    Article  CAS  Google Scholar 

  • Dambiec M, Polechońska L, Klink A (2013) Level of essentials and non-essential elements in black teas commercialized in Poland and their transfer to tea infusion. J. Food Compost. Anal 31:62–66

    Article  CAS  Google Scholar 

  • Diniz PHGD, Pistonesi MF, Alvarez MB, Band BSF, Araújo MCU (2015) Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA). J. Food Compost. Anal 39:103–110. https://doi.org/10.1016/j.jfca.2014.11.012

    Article  CAS  Google Scholar 

  • Ferreira SLC, Dos Santos WNL, Quintella CM, Barros Neto B, Bosque Sendra JM (2004) Doehlert matrix: a chemometric tool for analytical chemistry—review. Talanta 63(4):1061–1067. https://doi.org/10.1016/j.talanta.2004.01.015

    Article  CAS  PubMed  Google Scholar 

  • Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, Silva EGP, Portugal LA, Reis PS, Santos AS, Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 2007:179–186

  • Ferreira SLC, Silva LOB, Santana FA, Junior MMS, Matos GD, Santos WNL (2012) A review of reflux systems using cold finger for sample preparation in the determination of volatile elements. Microchem J 106:307–310

    Article  CAS  Google Scholar 

  • Han W (2007) Effect of liming and seasonal variation on lead concentration of tea plant (Camellia sinensis (L.) O. Kuntze). Chemosphere 66(1):84–90. https://doi.org/10.1016/j.chemosphere.2006.05.017

    Article  CAS  PubMed  Google Scholar 

  • Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, Perkovic V, Grobbee DE, Batty D, Woodward M (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus. Arch Intern Med 169(22):2053–2063. https://doi.org/10.1001/archinternmed.2009.439

    Article  PubMed  Google Scholar 

  • IUPAC, Analytical Chemistry Division. Comission on Spectrochemical and Optical 484 Procedures for Analysis (1978) Nomenclature, symbols, units and their usage in485 spectrochemical analysis-II. Data interpretation. Spectrochim. Acta B 33:242–245

    Google Scholar 

  • Jeszka-Skowron M, Krawczyk M, Zgoła-Grzeskowiak A (2015) Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: influence of citric acid addition on extraction of metals. J. Food Compost. Anal 40:70–77

    Article  CAS  Google Scholar 

  • Karak T, Bhagat RM (2010) Trace elements in tea leaves, made tea and tea infusion: a review. Food Res Int 43(9):2234–2252. https://doi.org/10.1016/j.foodres.2010.08.010

    Article  CAS  Google Scholar 

  • Kartika H, Shido J, Nakamoto ST, Li QX, Iwaoka WT (2011) Nutrient and mineral composition of dried mamaki leaves (Pipturus albidus) and infusions. J. Food Compost. Anal 24(1):44–48. https://doi.org/10.1016/j.jfca.2010.03.027

    Article  CAS  Google Scholar 

  • Korn MGA, Morte ESB, Santos DCMB, Castro JT, Barbosa JTP, Teixeira AP, Welz B, Santos WPC, Santos EBGN, Korn M (2008) Sample preparation for the determination of metals in food samples using spectroanalytical methods—a review. Appl Spectrosc Rev 43(2):67–92. https://doi.org/10.1080/05704920701723980

    Article  CAS  Google Scholar 

  • Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminum, aluminum oxide, and aluminum hydroxide. J Toxicol Environ Health, Part B: Crit Rev 10(sup1):1–269. https://doi.org/10.1080/10937400701597766

    Article  CAS  Google Scholar 

  • Krug FJ, Rocha FRP (2016) Métodos de preparo de amostras. Fundamentos sobre o preparo de amostras orgânicas e inorgânicas para análise elementar. Editora, EditSBQ, São Paulo

    Google Scholar 

  • Kumar A, Nair AGC, Reddy AVR, Garg AN (2005) Availability of essential elements in Indian and US tea brands. Food Chem 89(3):441–448. https://doi.org/10.1016/j.foodchem.2004.03.003

    Article  CAS  Google Scholar 

  • Lima AF, Lima FF, Richter EM, Munoz RAA (2016) Combination of sonication and heating for metal extraction from inorganic fertilizers prior to microwave-induced plasma spectrometry determinations. Appl Acoust 103:124–128. https://doi.org/10.1016/j.apacoust.2015.03.009

    Article  Google Scholar 

  • Marqués AM, Cervera ML, Guardia M (2016) Mineral analysis of human diets by spectrometry methods. Trends Anal Chem 82:457–467. https://doi.org/10.1016/j.trac.2016.07.007

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrient of higher plants (2nd ed.). London: Academic Press

  • Martins CA, Cerveira C, Scheffler GL, Pozebon D (2014) Metal determination in tea, wheat, and wheat flour using diluted nitric acid, high-efficiency nebulizer, and axially viewed ICP OES. Food Anal Methods 8:1652–1660

    Article  Google Scholar 

  • MATLAB (2017) The MathWorks, Natick, USA

  • Milani RF, Morgano MA, Saron ES, Silva FF, Cadore S (2015) Evaluation of direct analysis for trace elements in tea and herbal beverages by ICP-MS. J Braz Chem Soc 6:1211–1217

    Google Scholar 

  • Miranda K, Pereira-Filho ER (2013) Sequential determination of Cd, Cu and Pb in tea leaves by slurry introduction to thermospray flame furnace atomic absorption spectrometry. Food Anal Methods 6(6):1607–1610. https://doi.org/10.1007/s12161-013-9574-z

    Article  Google Scholar 

  • Nascentes CC, Korn M, Arruda MAZ (2001) A fast ultrasound-assisted extraction of Ca, Mg, Mn and Zn from vegetables. Microchem J 69:37–43

    Article  CAS  Google Scholar 

  • Novaes CG, Bezerra MA, Da Silva EGP, Dos Santos AMP, Da Silva ILR, Santos JHN (2016) A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP OES). Microchem J 128:331–346. https://doi.org/10.1016/j.microc.2016.05.015

    Article  CAS  Google Scholar 

  • Pereira JB, Dantas KGF (2016) Evaluation of inorganic elements in cat’s claw teas using ICP OES and GF AAS. Food Chem 196:331–337. https://doi.org/10.1016/j.foodchem.2015.09.057

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Filho ER (2015) Planejamento Fatorial Em Química: Maximizando a Obtenção de Resultos. Edufscar, Editora, p 88

    Google Scholar 

  • Santos D, Krug FJ, Pereira MG, Korn M (2006) Currents on ultrasound-assisted extraction for sample preparation and spectroscopic analytes determination. Appl Spectrosc Rev 41:305–321

    Article  CAS  Google Scholar 

  • Santos WPC, Castro JT, Bezerra MA, Fernandes APF, Ferreira SLC, Korn MGA (2009) Application of multivariate optimization in the development of an ultrasound-assisted extraction procedure for multielemental determination in bean seeds samples using ICP OES. Microchem J 91(2):153–158. https://doi.org/10.1016/j.microc.2008.10.001

    Article  CAS  Google Scholar 

  • Santos DCMB, Carvalho LSB, Lima DC, Leão DJ, Teixeira LSG, Korn MGA (2014) Determination of micronutrient minerals in coconut milk by ICP OES after ultrasound-assisted extraction procedure. J Food Compost Anal 34(1):75–80. https://doi.org/10.1016/j.jfca.2014.02.008

    Article  CAS  Google Scholar 

  • Shaltout AA, Abdel-Aal MS, Welz B, Castilho INB (2013) Determination of Cd, Cu, Ni, and Pb in black tea from Saudi Arabia using graphite furnace atomic absorption spectrometry after microwave-assisted acid digestion. Anal Lett 46(13):2089–2100. https://doi.org/10.1080/00032719.2013.784918

    Article  CAS  Google Scholar 

  • Solomon D, Lehmann J, Tekalign M, Fritzsche F, Zech W (2001) Sulfur fractions in particle-size separates of the sub-humid Ethiopian highlands as influenced by land use changes. Geoderma 102:41–59

    Article  CAS  Google Scholar 

  • Szymczycha-Madeja A, Welna M, Pohl P (2012) Elemental analysis of teas and their infusions by spectrometric methods. Trends Anal Chem 35:165–181

    Article  CAS  Google Scholar 

  • Szymczycha-Madeja A, Welna M, Pohl P (2016) Comparison and validation of different alternative sample preparation procedures of tea infusions prior to their multi-element analysis by FAAS and ICP OES. Food Anal Methods 9:1398–1411

    Article  Google Scholar 

  • Tarley CRT, Silveira G, Santos WNL, Matos GD, Silva EGP, Bezerra MA, Miro M, Ferreira SLC (2009) Chemometric tools in electroanalytical chemistry: methods for optimization based on factorial design and response surface methodology. Microchem J 92(1):58–67. https://doi.org/10.1016/j.microc.2009.02.002

    Article  CAS  Google Scholar 

  • Tiwari BK (2015) Ultrasound: a clean, green extraction technology. Trends Anal Chem 71:100–109. https://doi.org/10.1016/j.trac.2015.04.013

    Article  CAS  Google Scholar 

  • Villa JEL, Pereira CD, Cadore S (2015) A novel, rapid and simple acid extraction for multielemental determination in chocolate bars. Microchem J 121:199–204. https://doi.org/10.1016/j.microc.2015.03.008

    Article  CAS  Google Scholar 

  • Wang ZM, Zhou B, Wang YS, Gong QY, Wang QM, Yan JJ, Gao W, Wang LS (2011) Black and green tea consumption and the risk of coronary artery disease: a meta-analysis. Am J Clin Nutr 93(3):506–515. https://doi.org/10.3945/ajcn.110.005363

    Article  CAS  PubMed  Google Scholar 

  • Welna M, Szymczycha-Madeja A, Pohl P (2013) A comparison of samples preparation strategies in the multi-elemental analysis of tea by spectrometric methods. Food Res Int 53:922–930

    Article  CAS  Google Scholar 

  • Wong MH, Fung KF, Carr HP (2003) Aluminium and fluoride contents of tea, with emphasis on brick tea and their health implications. Toxicol Lett 137(1-2):111–120. https://doi.org/10.1016/S0378-4274(02)00385-5

    Article  CAS  PubMed  Google Scholar 

  • Yemane M, Chandravanshi BS, Wondimu T (2008) Levels of essential and non-essential metals in leaves of the tea plant (Camellia sinensis L.) and soil of Wushwush farms. Ethiopia, Food Chem 107:1236–1243

    CAS  Google Scholar 

  • Yokel RA, Florence RL (2008) Aluminum bioavailability from tea infusion. Food Chem Toxicol 46(12):3659–3663. https://doi.org/10.1016/j.fct.2008.09.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Zhang S, Zhang Z (2017) Relationship between multi-element composition in tea leaves and in provenance soils for geographical traceability. Food Control 76:82–87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius Câmara Costa.

Ethics declarations

This is an original research article that has neither been published previously nor considered presently for publication elsewhere.

All authors named in the manuscript are entitled to the authorship and have approved the final version of the submitted manuscript.

Conflict of Interest

Vinicius Câmara Costa declares that he has no conflict of interest. Wesley Nascimento Guedes declares that he has no conflict of interest. Antonio de Santana Santos declares that he has no conflict of interest. Madson Moreira Nascimento declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies involving human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, V.C., Nascimento Guedes, W., de Santana Santos, A. et al. Multivariate Optimization for the Development of a Fast and Simple Ultrasound-Assisted Extraction Procedure for Multielemental Determination in Tea Leaves by Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES). Food Anal. Methods 11, 2004–2012 (2018). https://doi.org/10.1007/s12161-018-1171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-018-1171-8

Keywords

Navigation