Skip to main content
Log in

Vortex-Assisted Dispersive Solid-Phase Microextraction Using Ionic Liquid-Modified Metal-Organic Frameworks of PAHs from Environmental Water, Vegetable, and Fruit Juice Samples

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A vortex-assisted dispersive solid-phase microextraction (VA-d-μ-SPE) method for separation and preconcentration of polycyclic aromatic hydrocarbons (PAHs) using ionic liquid-modified metal–organic frameworks (IL-MIL-100(Fe)), prior to the measurement by gas chromatographic system equipped with a flame ionization detector (GC–FID) has been developed. The IL-MIL-100(Fe) composite has been characterized using FT-IR, XRD, BET, and thermogravimetric analyzer measurements. The method is based on the sorption of PAHs on IL-MIL-100(Fe) due to hydrophobic and π–π interactions between IL-MIL-100(Fe) and PAHs. The experimental parameters for preconcentration of PAHs, such as solution type, type and volume of the eluent, pH, time of the sorption and desorption, and the amount of the sorbent were optimized. Under the optimized conditions, the method showed to be linear over the concentration range of 0.02 to 200 ng/mL for each PAHs and the correlation coefficients were ranged from 0.9984 to 0.9997. The limit of detection (LOD) of the method at a signal to noise ratio of 3 was 2.0–5.5 ng/L. Intra-day and inter-day precisions were obtained in the range of 3.0–3.8 and 4.1–4.9%, respectively. Finally, the developed method was successfully used for extraction and determination of PAHs in environmental water, vegetable, and fruit juice samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrajano T Jr, Yan B, O’Malley V (2003) High molecular weight petrogenic and pyrogenic hydrocarbons in aquatic environments. Treatise on geochemistry 9:475–509

    Google Scholar 

  • Adegoke O, Forbes P-B-C (2016) l-Cysteine-capped core/shell/shell quantum dot–graphene oxide nanocomposite fluorescence probe for polycyclic aromatic hydrocarbon detection. Talanta 146:780–788

    Article  CAS  Google Scholar 

  • Amiri A, Baghayeri M, Kashmari M (2016) Magnetic nanoparticles modified with polyfuran for the extraction of polycyclic aromatic hydrocarbons prior to their determination by gas chromatography. Microchim Acta 183:149–156

    Article  CAS  Google Scholar 

  • ATSDR C (2007) CERCLA priority list of hazardous substances. Agency for Toxic Substances and Disease Registry

  • Bai D, Li J, Chen S-B, Chen B-H (2001) A novel cloud-point extraction process for preconcentrating selected polycyclic aromatic hydrocarbons in aqueous solution. Environ Sci Technol 35:3936–3940

    Article  CAS  Google Scholar 

  • Berthod L, Roberts G, Whitley D-C, Sharpe A, Mills G-A (2014) A solid-phase extraction method for rapidly determining the adsorption coefficient of pharmaceuticals in sewage sludge. Water Res 67:292–298

    Article  CAS  Google Scholar 

  • Borecka M, Białk-Bielińska A, Siedlewicz G, Kornowska K, Kumirska J, Stepnowski P, Pazdro K (2013) A new approach for the estimation of expanded uncertainty of results of an analytical method developed for determining antibiotics in seawater using solid-phase extraction disks and liquid chromatography coupled with tandem mass spectrometry technique. J Chromatogr A 1304:138–146

    Article  CAS  Google Scholar 

  • Canioni R, Roch-Marchal C, Sécheresse F, Horcajada P, Serre C, Hardi-Dan M, Férey G, Greneche J-M, Lefebvre F, Chang J-S (2011) Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100 (Fe). J Mater Chem 21:1226–1233

    Article  CAS  Google Scholar 

  • Chen C, Zhang X, Long Z, Zhang J, Zheng C (2012) Molecularly imprinted dispersive solid-phase microextraction for determination of sulfamethazine by capillary electrophoresis. Microchim Acta 178:293–299

    Article  CAS  Google Scholar 

  • Chunovkina A, Chursin A (2001) “Guide to the Expression Of Uncertainty In Measurement” (GUM) and “mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes” (MRA): some problems of data processing and measurement uncertainty evaluation. In: Advanced mathematical and computational tools in metrology V, World Scientific, pp. 55–66

  • Coluci V-R, Vendrame R, Braga R-S, Galvão D-S (2002) Identifying relevant molecular descriptors related to carcinogenic activity of polycyclic aromatic hydrocarbons (PAHs) using pattern recognition methods. J Chem Inf Comput Sci 42:1479–1489

    Article  CAS  Google Scholar 

  • Cordero-Vaca M, Trujillo-Rodríguez M-J, Zhang C, Pino V, Anderson J-L, Afonso A-M (2015) Automated direct-immersion solid-phase microextraction using crosslinked polymeric ionic liquid sorbent coatings for the determination of water pollutants by gas chromatography. Anal Chim Acta 407:4615–4627

    CAS  Google Scholar 

  • Fagerlund G (1973) Determination of specific surface by the BET method. Mater Struct 6:239–245

    CAS  Google Scholar 

  • Fasih Ramandi N, Shemirani F (2015) Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples. Talanta 131:404–411

    Article  CAS  Google Scholar 

  • Galán-Cano F, Lucena R, Cárdenas S, Valcárcel M (2013) Dispersive micro-solid phase extraction with ionic liquid-modified silica for the determination of organophosphate pesticides in water by ultra performance liquid chromatography. Microchem J 106:311–317

    Article  Google Scholar 

  • Gao M-L, Wei N, Han Z-B (2016) Anionic metal-organic framework for high-efficiency pollutant removal and selective sensing of Fe(III) ions. RSC Adv 6:60940–60944

    Article  CAS  Google Scholar 

  • Garcia-Falcon MS, Cancho-Grande B, Simal-Gándara J (2004) Stirring bar sorptive extraction in the determination of PAHs in drinking waters. Water Res 38:1679–1684

    Article  CAS  Google Scholar 

  • Ge D, Lee H-K (2011) Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1218:8490–8495

    Article  CAS  Google Scholar 

  • Guo L, Lee H-K (2011) Development of multiwalled carbon nanotubes based micro-solid-phase extraction for the determination of trace levels of sixteen polycyclic aromatic hydrocarbons in environmental water samples. J Chromatogr A 1218:9321–9327

    Article  CAS  Google Scholar 

  • Han D, Tang B, Row K-H (2013) Dispersive solid phase extraction with an ionic liquid modified polymer for determination of cyanazine and atrazine in tomatoes. Anal Lett 46:2359–2371

    Article  CAS  Google Scholar 

  • Harrak R-E, Calull M, Marcé R-M, Borrull F (1996) Determination of polycyclic aromatic hydrocarbons in water by solid-phase extraction membranes. International Journal of Environmental Anal Chem 64:47–57

    Article  Google Scholar 

  • Huang Y, Zhou Q, Xie G (2011) Development of micro-solid phase extraction with titanate nanotube array modified by cetyltrimethylammonium bromide for sensitive determination of polycyclic aromatic hydrocarbons from environmental water samples. J Hazard Mater 193:82–89

    Article  CAS  Google Scholar 

  • Huang Y, Wang Y, Wang Y, Pan Q, Ding X, Xu K, Li N, Wen Q (2016) Ionic liquid-coated Fe3O4/APTES/graphene oxide nanocomposites: synthesis, characterization and evaluation in protein extraction processes. RSC Adv 6:5718–5728

    Article  CAS  Google Scholar 

  • IARC (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC monographs on the evaluation of carcinogenic risks to humans 92

  • Konieczka P, Namieśnik J (2010) Estimating uncertainty in analytical procedures based on chromatographic techniques. J Chromatogr A 1217:882–891

    Article  CAS  Google Scholar 

  • Lei J, Qian R, Ling P, Cui L, Ju H (2014) Design and sensing applications of metal–organic framework composites. Trends Anal Chem 58:71–78

    Article  CAS  Google Scholar 

  • Liu Y, Chang X, Wang S, Guo Y, Din B, Meng S (2004) Solid-phase extraction and preconcentration of cadmium(II) in aqueous solution with Cd(II)-imprinted resin (poly-Cd(II)-DAAB-VP) packed columns. Anal Chim Acta 519:173–179

    Article  CAS  Google Scholar 

  • Liu F-J, Liu C-T, Li W, Tang A-N (2015) Dispersive solid-phase microextraction and capillary electrophoresis separation of food colorants in beverages using diamino moiety functionalized silica nanoparticles as both extractant and pseudostationary phase. Talanta 132:366–372

    Article  CAS  Google Scholar 

  • Ma J, Xiao R, Li J, Yu J, Zhang Y, Chen L (2010) Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography–mass spectrometry. J Chromatogr A 1217:5462–5469

    Article  CAS  Google Scholar 

  • Maghsoudi S, Noroozian E (2012) HP-SPME of volatile polycyclic aromatic hydrocarbons from water using multiwalled carbon nanotubes coated on a steel fiber through electrophoretic deposition. Chromatographia 75:913–921

    Article  CAS  Google Scholar 

  • Naing N-N, Yau Li S-F, Lee H-K (2016) Magnetic micro-solid-phase-extraction of polycyclic aromatic hydrocarbons in water. J Chromatogr A 1440:23–30

    Article  CAS  Google Scholar 

  • Nisbet I-C, LaGoy P-K (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    Article  CAS  Google Scholar 

  • Pelit F-O, Pelit L, Dizdaş T-N, Aftafa C, Ertaş H, Yalçınkaya E-E, Türkmen H, Ertaş F-N (2015) A novel polythiophene-ionic liquid modified clay composite solid phase microextraction fiber: preparation, characterization and application to pesticide analysis. Anal Chim Acta 859:37–45

    Article  CAS  Google Scholar 

  • Plechkova N-V, Seddon K-R (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  • Polo-Luque M-L, Simonet B-M, Valcárcel M (2013) Ionic liquid combined with carbon nanotubes: a soft material for the preconcentration of PAHs. Talanta 104:169–172

    Article  CAS  Google Scholar 

  • Rahimi M, Noroozian E (2014) Application of copolymer coated frits for solid-phase extraction of poly cyclic aromatic hydrocarbons in water samples. Anal Chim Acta 836:45–52

    Article  CAS  Google Scholar 

  • Rajabi M, Moghadam A-G, Barfi B, Asghari A (2016) Air-assisted dispersive micro-solid phase extraction of polycyclic aromatic hydrocarbons using a magnetic graphitic carbon nitride nanocomposite. Microchim Act 183:1449–1458

    Article  CAS  Google Scholar 

  • Reyes-Gallardo E-M, Lucena R, Cárdenas S, Valcárcel M (2014) Magnetic nanoparticles-nylon 6 composite for the dispersive micro solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples. J Chromatogr A 1345:43–49

    Article  CAS  Google Scholar 

  • Rocío-Bautista P, Martínez-Benito C, Pino V, Pasán J, Ayala J-H, Ruiz-Pérez C, Afonso A-M (2015) The metal–organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine. Talanta 139:13–20

    Article  Google Scholar 

  • Rocío-Bautista P, Pino V, Ayala J-H, Pasán J, Ruiz-Pérez C, Afonso A-M (2016) A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions. J Chromatogr A 1436:42–50

    Article  Google Scholar 

  • Sharifi V, Abbasi A, Nosrati A (2016) Application of hollow fiber liquid phase microextraction and dispersive liquid–liquid microextraction techniques in analytical toxicology. J Food Drug Anal 24:264–276

    Article  CAS  Google Scholar 

  • Su P, Wang R, Yu Y, Yang Y (2014) Microwave-assisted synthesis of ionic liquid-modified silica as a sorbent for the solid-phase extraction of phenolic compounds from water. Anal Methods 6:704–709

    Article  CAS  Google Scholar 

  • Tong M, Liu D, Yang Q, Devautour-Vinot S, Maurin G, Zhong C (2013) Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. J Mater Chem 1:8534–8537

    Article  CAS  Google Scholar 

  • Vidal L, Riekkola M-L, Canals A (2012) Ionic liquid-modified materials for solid-phase extraction and separation: a review. Anal Chim Acta 715:19–41

    Article  CAS  Google Scholar 

  • Wagle D, Kamath G, Baker G-A (2013) Elucidating interactions between ionic liquids and polycyclic aromatic hydrocarbons by quantum chemical calculations. J Phys Chem C 117:4521–4532

    Article  CAS  Google Scholar 

  • Wang C, Chen Y, Zhuo K, Wang J (2013) Simultaneous reduction and surface functionalization of graphene oxide via an ionic liquid for electrochemical sensors. Chem Commun 49:3336–3338

    Article  CAS  Google Scholar 

  • Wang T-T, Chen Y-H, Ma J-F, Hu M-J, Li Y, Fang J-H, Gao H-Q (2014) A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additives. Anal Bioanal Chem 406(20):4955–4963

    Article  CAS  Google Scholar 

  • Wu S, Yu W (2012) Liquid–liquid extraction of polycyclic aromatic hydrocarbons in four different edible oils from China. Food Chem 134:597–601

    Article  CAS  Google Scholar 

  • Xiao Y, Chen F, Zhu X, Qin H, Huang H, Zhang Y, Yin D, He X, Wang K (2015) Ionic liquid-assisted formation of lanthanide metal-organic framework nano/microrods for superefficient removal of Congo red. Chem Res Chinese U 31(6):899–903

    Article  CAS  Google Scholar 

  • Yaghi O-M, Li H (1995) Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. JACS 117:10401–10402

    Article  CAS  Google Scholar 

  • Yan H, Gao M, Qiao J (2012) New ionic liquid modified polymeric microspheres for solid-phase extraction of four Sudan dyes in foodstuff samples. J Agri Food Chem 60:6907–6912

    Article  CAS  Google Scholar 

  • Yan H, Gao M, Yang C, Qiu M (2014) Ionic liquid-modified magnetic polymeric microspheres as dispersive solid phase extraction adsorbent: a separation strategy applied to the screening of sulfamonomethoxine and sulfachloropyrazine from urine. Anal Bioanal Chem 406:2669–2677

    Article  CAS  Google Scholar 

  • Zha M, Liu J, Wong Y-L, Xu Z (2015) Extraction of palladium from nuclear waste-like acidic solutions by a metal-organic framework with sulfur and alkene functions. J Mater Chem 3:3928–3934

    Article  CAS  Google Scholar 

  • Zhang Q, Yang F, Tang F, Zeng K, Wu K, Cai Q, Yao S (2010) Ionic liquid-coated Fe3O4 magnetic nanoparticles as an adsorbent of mixed hemimicelles solid-phase extraction for preconcentration of polycyclic aromatic hydrocarbons in environmental samples. Analyst 135:2426–2433

    Article  CAS  Google Scholar 

  • Zhang S, Wu W, Zheng Q (2015) Evaluation of modified Fe3O4 magnetic nanoparticle graphene for dispersive solid-phase extraction to determine trace PAHs in seawater. Anal Methods 7:9587–9595

    Article  CAS  Google Scholar 

  • Zhou Q, Gao Y (2014) Determination of polycyclic aromatic hydrocarbons in water samples by temperature-controlled ionic liquid dispersive liquid-liquid microextraction combined with high performance liquid chromatography. Anal Methods 6:2553–2559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Moradi.

Ethics declarations

Conflict of Interest

A. Nasrollahpour declares that he has no conflict of interest. S.E. Moradi declares that he has no conflict of interest. M.J. Baniamerian declares that he has no conflict of interest.

Funding

The authors do not have a financial relationship with the organization that sponsored the research.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrollahpour, A., Moradi, S.E. & Baniamerian, M.J. Vortex-Assisted Dispersive Solid-Phase Microextraction Using Ionic Liquid-Modified Metal-Organic Frameworks of PAHs from Environmental Water, Vegetable, and Fruit Juice Samples. Food Anal. Methods 10, 2815–2826 (2017). https://doi.org/10.1007/s12161-017-0843-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-0843-0

Keywords

Navigation