Skip to main content
Log in

Graphite “Filter Furnace” Atomizer with Pd–Mg Chemical Modifier for Direct Analysis of Foods Using Electrothermal Atomic Absorption Spectrometry

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

This paper presents the results of optimization of operation parameters, investigation of analytical characteristics, and the capabilities of a graphite “filter furnaceˮ (FF) atomizer with a Pd–Mg chemical modifier (CM) for the direct determination of trace amounts of Pb, As, and Cd in foods by electrothermal atomic absorption spectrometry (ET AAS). The effects of heating parameters of the furnace on atomic absorbance values of Pb, As, and Cd were investigated during the pyrolysis and atomization steps including the carrying out of the investigation in the presence of mineral and organic macrocomponents of the analyzed materials. It is shown that the use of the graphite FF atomizer and Pd–Mg CM provides a ~2-fold increase in sensitivity of ET AAS determination of the listed elements in comparison with a conventional heated graphite furnace with a platform as well as completely or significantly eliminate matrix effects including background absorbance. The obtained limits of quantification for Pb, As, and Cd in foods were 0.0015, 0.002, and 0.0001 mg kg−1, respectively. The reliability of the proposed method was checked using standard methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anselmi A, Tittarelli P, Katskov DA (2002) Determination of trace elements in automotive fuels by filter furnace atomic absorption spectrometry. Spectrochim Acta Part B 57:403–411. doi:10.1016/S0584-8547(01)00392-5

    Article  Google Scholar 

  • Anwar F, Kazi TG, Saleem R, Bhanger MI (2004) Rapid determination of some trace metals in several oils and fats. Grasas Aceites 55:160–168. doi:10.3989/gya.2004.v55.i2.162

    Article  CAS  Google Scholar 

  • Becker E, Rampazzo RT, Dessuy MB, Vale MGR, Silva MM, Welz B, Katskov DA (2011) Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: a comparison between filter and platform atomizers. Spectrochim Acta Part B 66:345–351. doi:10.1016/j.sab.2011.04.003

    Article  CAS  Google Scholar 

  • Bozhanov SR, Karadjova IB (2008) Determination of trace metals in Bulgarian lavender oil by electrothermal atomic absorption spectrometry. J Essent Oil Res 20:549–555. doi:10.1080/10412905.2008.9700086

    Article  CAS  Google Scholar 

  • Buldini PL, Cavalli S, Sharma JL (1999) Determination of transition metals in wine by IC, DPASV-DPCSV, and ZGFAAS coupled with UV photolysis. J Agric Food Chem 47:1993–1998. doi:10.1021/jf980573j

    Article  CAS  Google Scholar 

  • Capelo JL, Catarino S, Curvelo-Garcia AS, Vaiao M (2005) Focused ultrasound versus microwave digestion for the determination of lead in must by electrothermal-atomic absorption spectrometry. J AOAC Int 88:585–591

    CAS  Google Scholar 

  • Codex standard 193–1995. Codex general standard for contaminants and toxins in food and feed

  • Damin ICF, Dessuy MB, Castilhos TS, Silva MM, Vale MGR, Welz B, Katskov DA (2009) Comparison of direct sampling and emulsion analysis using a filter furnace for the determination of lead in crude oil by graphite furnace atomic absorption spectrometry. Spectrochim Acta Part B 64:530–536. doi:10.1016/j.sab.2009.03.002

    Article  Google Scholar 

  • Dessuy MB, Vale MGR, Souza AS, Ferreira SLC, Welz B, Katskov DA (2008) Method development for the determination of lead in wine using electrothermal atomic absorption spectrometry comparing platform and filter furnace atomizers and different chemical modifiers. Talanta 74:1321–1329. doi:10.1016/j.talanta.2007.08.048

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • EN 13805:2002 Foodstuffs. Determination of trace elements. Pressure digestion

  • EN 14084:2003 Foodstuffs. Determination of trace elements. Determination of lead, cadmium, zinc, copper and iron by atomic absorption spectrometry (AAS) after microwave digestion

  • EN 14546:2005 Foodstuffs. Determination of trace elements. Determination of total arsenic by hydride generation atomic absorption spectrometry (HGAAS) after dry ashing

  • Fernandes KG, Moraes M, Gomes Neto JA, Nóbrega JA, Oliveira PV (2002) Evaluation and application of bismuth as an internal standard for the determination of lead in wines by simultaneous electrothermal atomic absorption spectrometry. Analyst 127:157–162. doi:10.1039/B105309B

    Article  CAS  Google Scholar 

  • Grindlay G, Mora J, Gras L, Loos-Vollebregt MTC (2011) Atomic spectrometry methods for wine analysis: a critical evaluation and discussion of recent applications. Anal Chim Acta 691:18–32. doi:10.1016/j.aca.2011.02.050

    Article  CAS  Google Scholar 

  • Hibbert DB, Gooding JJ (2000) Data analysis for chemistry. An introductory guide for students and laboratory scientists. Oxford University Press, New York

    Google Scholar 

  • Karadjova I, Zachariadis G, Boskoub G, Stratis J (1998) Electrothermal atomic absorption spectrometric determination of aluminium, cadmium, chromium, copper, iron, manganese, nickel and lead in olive oil. J Anal At Spectrom 13:201–204. doi:10.1039/A707256B

    Article  CAS  Google Scholar 

  • Katskov DA (2007) Graphite filter atomizer in atomic absorption spectrometry. Spectrochim Acta Part B 62:897–917. doi:10.1016/j.sab.2007.03.023

    Article  Google Scholar 

  • Katskov DA, Shtepan AM, McCrindle RI, Marais PJJG (1994) Applications of a two-step atomizer and related techniques for investigating the processes of sample evaporation and atomization in electrothermal atomic absorption spectrometry. J Anal At Spectrom 9:321–331. doi:10.1039/JA9940900321

    Article  CAS  Google Scholar 

  • Katskov DA, McCrindle RI, Schwarzer R, Marais PJJG (1995) The graphite furnace: a new atomization concept for atomic spectroscopy. Spectrochim Acta Part B 50:1543–1555. doi:10.1016/0584-8547(95)01339-3

    Article  Google Scholar 

  • Katskov DA, Marais PJJG, Tittarelli P (1996) Design, operation and analytical characteristics of filter furnace a new atomizer for electrothermal atomic absorption spectrometry. Spectrochim Acta Part B 51:1169–1189. doi:10.1016/0584-8547(96)01485-1

    Article  Google Scholar 

  • Khan H, Fida M, Mohammadzai IU, Khan M (2007) Estimation of residual nickel and some heavy metals in vanaspati ghee. J Chin Chem Soc 54:737–741. doi:10.1002/jccs.200700105

    CAS  Google Scholar 

  • Kristl J, Veber M, Slekovec M (2002) The application of ETAAS to the determination of Cr, Pb and Cd in samples taken during different stages of the winemaking process. Anal Bioanal Chem 373:200–204. doi:10.1007/s00216-002-1295-x

    Article  CAS  Google Scholar 

  • Matthews MR, Parsons PJ (1993) A simple method for the determination of lead in wine using Zeeman electrothermal atomization atomic absorption spectrometry. At Spectrosc 14:41–46

    CAS  Google Scholar 

  • Mindak WR (1994) Determination of lead in table wines by graphite furnace atomic absorption spectrometry. J AOAC Int 77:1023–1030

    CAS  Google Scholar 

  • Nomura CS, Correia PRM, Oliveira PV, Oliveira E (2004) W + Rh as permanent chemical modifier in simultaneous atomic absorption spectrometry: interference studies on As, Cd, Pb and Se determination. J Braz Chem Soc 15:75–82. doi:10.1590/S0103-50532004000100013

    Article  CAS  Google Scholar 

  • Price WJ, Roos JTH, Clay AF (1970) Rapid Determination of Nickel in Edible Fats by Atomic–absorption Spectrophotometry. Analyst 95:760–762. doi:10.1039/AN9709500760

    Article  CAS  Google Scholar 

  • Schlemmer G, Welz B (1986) Palladium and magnesium nitrates, a more universal modifier for graphite furnace atomic absorption spectrometry. Spectrochim Acta Part B 41:1157–1165. doi:10.1016/0584-8547(86)80175-6

    Article  Google Scholar 

  • Sedykh EM, Belyaev YI, Sorokina EV (1980) Elimination of matrix effect in electrothermal atomic absorption determination of Ag, Pb, Co, Ni and Te in samples of complicated composition. J Anal Chem 35:2348–2353

    CAS  Google Scholar 

  • Slavin W, Manning DC, Carnrick GR (1981) The stabilized temperature platform furnace. At Spectrosc 2:137–145

    CAS  Google Scholar 

  • Stafilov T, Cvetković J, Arpadjan S, Karadjova I (2002) ETAAS determination of some trace elements in wine. BAÜ Fen Bil Enst Dergisi 4:90–95

    Google Scholar 

  • Teissedre PL, Cabanis MT, Cabanis JC (1993) Comparison of 2 mineralization methods for determination of lead by electrothermal atomic-absorption spectrometry—application to soils, vine-leaves, grapes, musts, rapes and lees samples. Analusis 21:249–254

    CAS  Google Scholar 

  • Tripkovic M, Todorovic M, Holclajtner-Antunovic I, Razic S, Kandic A, Markovic D (2000) Spectrochemical determination of lead in wines. J Serb Chem Soc 65:323–329

    CAS  Google Scholar 

  • Tsalev DL, Slaveykova VI (1998) Chemical modification in electrothermal atomic absorption spectrometry. In: Sneddon J (ed) Advances in Atomic Spectroscopy. JAI Press Inc., Greenwich, Connecticut, pp 27–150

    Google Scholar 

  • Zuo ZY, Zhang M, Sun ZA, Wang DS (2002) Determination of lead in grape wine by graphite furnace atomic absorption spectrometry with ammonium dihydric phosphate as modifier. Spectrosc Spect Anal 22:859–861

    CAS  Google Scholar 

Download references

Conflict of Interest

Alexander Zacharia declares that he has no conflict of interest. Alexander Zhuravlev declares that he has no conflict of interest. Alexander Chebotarev declares that he has no conflict of interest. Michael Arabadzhi declares that he has no conflict of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zhuravlev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zacharia, A., Zhuravlev, A., Chebotarev, A. et al. Graphite “Filter Furnace” Atomizer with Pd–Mg Chemical Modifier for Direct Analysis of Foods Using Electrothermal Atomic Absorption Spectrometry. Food Anal. Methods 8, 668–677 (2015). https://doi.org/10.1007/s12161-014-9840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-014-9840-8

Keywords

Navigation