Skip to main content

Advertisement

Log in

Comparative study of solid biofuels derived from sugarcane leaves with two different thermochemical conversion methods: wet and dry torrefaction

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This work describes the conversion of sugarcane leaves into biocoal with two thermal processes: wet torrefaction (subcritical water, 175–250 °C) and dry torrefaction (nitrogen atmosphere, 225–300 °C). The residence time was 30 min for both processes. The effects on physical and energy characteristics, including mass and energy yield, proximate and ultimate analyses, fiber analysis, higher heating value (HHV), structural parameters determined by Fourier-transform infrared spectroscopy, and O/C and H/C atomic ratios were used for comparisons. The results showed that increasing the reaction temperature lowers the mass yield; however, it also significantly improves the fuel ratio of torrefied samples. The highest HHV of wet and dry-torrefied samples were 23.31 and 22.07 MJ/kg, respectively. The best removal of ash and sulfur content was obtained under wet torrefaction. Moreover, wet torrefaction was recommended as a suitable process for hemicellulose depolymerization. At 250 °C, the wet-torrefied sample had the highest fuel ratio (0.48) and was suited for biomass co-firing. The finding that wet-torrefied samples reached the same range of lignite at lower reaction temperatures than dry-torrefied samples was particularly intriguing. Torrefaction at the temperatures below 250 °C did not prove to have a statistically significant effect on the energy properties of the dry-torrefied samples. Therefore, wet torrefaction is a promising process in the thermochemical conversion of sugarcane leaves into solid biofuel.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Office of the Cane and Sugar Board (2019) Production Report 2019. http://www.ocsb.go.th/th/home/index.php. Accessed 12 Mar 2020

  2. Pipitpukdee S, Attavanich W, Bejranonda S (2020) Climate change impacts on sugarcane production in Thailand. Atmosphere 11:408. https://doi.org/10.3390/atmos11040408

    Article  Google Scholar 

  3. Junpen A, Pansuk J, Garivait S (2020) Estimation of reduced air emissions as a result of the implementation of the measure to reduce burned sugarcane in Thailand. Atmosphere 11:366. https://doi.org/10.3390/atmos11040366

    Article  CAS  Google Scholar 

  4. Kongchouy P, Tia W, Nathakaranakule A, Soponronnarit S (2021) Assessment of seasonal availability and spatial distribution of bio-feedstock for power generation in Thailand. Bioenerg Res 14:70–90. https://doi.org/10.1007/s12155-020-10168-x

    Article  CAS  Google Scholar 

  5. Wannasiri W (2020) The potential of biomass fuel and land suitability for biomass power plant based on GIS spatial analysis in the Nakhon Ratchasima province. Thailand Chem Eng Trans 78:325–330. https://doi.org/10.3303/CET2078055

    Article  Google Scholar 

  6. Acharya B, Sule I, Dutta A (2012) A review on advances of torrefaction technologies for biomass processing. Biomass Conv Bioref 2:349–369. https://doi.org/10.1007/s13399-012-0058-y

    Article  CAS  Google Scholar 

  7. Sarker TR, Nanda S, Dalai AK, Meda V (2021) A review of torrefaction technology for upgrading lignocellulosic biomass to solid biofuels. Bioenerg Res 14:645–669. https://doi.org/10.1007/s12155-020-10236-2

    Article  CAS  Google Scholar 

  8. Deprá MC, dos Santos AM, Severo IA et al (2018) Microalgal biorefineries for bioenergy production: can we move from concept to industrial reality. Bioenerg Res 11:727–747. https://doi.org/10.1007/s12155-018-9934-z

    Article  CAS  Google Scholar 

  9. Klaas M, Greenhalf C, Ouadi M et al (2020) The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. Rineng 7:100165. https://doi.org/10.1016/j.rineng.2020.100165

    Article  Google Scholar 

  10. Olugbade TO, Ojo OT (2020) Biomass torrefaction for the production of high-grade solid biofuels: a review. Bioenerg Res 13:999–1015. https://doi.org/10.1007/s12155-020-10138-3

    Article  CAS  Google Scholar 

  11. Cahyanti MN, Doddapaneni TRKC, Kikas T (2020) Biomass torrefaction: an overview on process parameters, economic and environmental aspects and recent advancements. Bioresour Technol 301:122737. https://doi.org/10.1016/j.biortech.2020.122737

    Article  CAS  PubMed  Google Scholar 

  12. Lynam JG, Coronella CJ, Yan W et al (2011) Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 102:6192–6199. https://doi.org/10.1016/j.biortech.2011.02.035

    Article  CAS  PubMed  Google Scholar 

  13. Shankar Tumuluru J, Sokhansanj S, Hess JR et al (2011) Review: a review on biomass torrefaction process and product properties for energy applications. Ind Biotechnol 7:384–401. https://doi.org/10.1089/ind.2011.7.384

    Article  CAS  Google Scholar 

  14. Xu X, Tu R, Sun Y et al (2018) Influence of biomass pretreatment on upgrading of bio-oil: comparison of dry and hydrothermal torrefaction. Bioresour Technol 262:261–270. https://doi.org/10.1016/j.biortech.2018.04.037

    Article  CAS  PubMed  Google Scholar 

  15. Acharya B, Dutta A, Minaret J (2015) Review on comparative study of dry and wet torrefaction. Sustain Energy Technol Assess 12:26–37. https://doi.org/10.1016/j.seta.2015.08.003

    Article  Google Scholar 

  16. Conag AT, Villahermosa JER, Cabatingan LK, Go AW (2018) Energy densification of sugarcane leaves through torrefaction under minimized oxidative atmosphere. Energy Sustain Dev 42:160–169. https://doi.org/10.1016/j.esd.2017.11.004

    Article  Google Scholar 

  17. Wang Q, Liu S, Yang G, Chen J (2013) Thermogravimetric kinetics of sugarcane bagasse pretreated by hot-water. Bioresour Technol 129:676–679. https://doi.org/10.1016/j.biortech.2012.11.150

    Article  CAS  PubMed  Google Scholar 

  18. Supramono D, Devina YM, Tristantini D (2015) Effect of heating rate of torrefaction of sugarcane bagasse on its physical characteristics. Int J Technol 6:1084–1093. https://doi.org/10.14716/ijtech.v6i7.1771

  19. Manatura K (2020) Inert torrefaction of sugarcane bagasse to improve its fuel properties. Case Stud Therm Eng 19:100623. https://doi.org/10.1016/j.csite.2020.100623

    Article  Google Scholar 

  20. Conag AT, Villahermosa JER, Cabatingan LK, Go AW (2019) Predictive HHV model for raw and torrefied sugarcane residues. Waste Biomass Valor 10:1929–1943. https://doi.org/10.1007/s12649-018-0204-2

    Article  CAS  Google Scholar 

  21. Pattiya A (2019) Improvement of sugarcane leaves property by torrefaction in a continuous flow reactor. SEJ 14:106–115

    Google Scholar 

  22. Soponpongpipat N, Sittikul D, Sae-Ueng U (2015) Higher heating value prediction of torrefaction char produced from non-woody biomass. Front Energy 9:461–471. https://doi.org/10.1007/s11708-015-0377-3

    Article  Google Scholar 

  23. Sangjan A, Ngamsiri P, Klomkliang N et al (2020) Effect of microwave-assisted wet torrefaction on liquefaction of biomass from palm oil and sugarcane wastes to bio-oil and carbon nanodots/nanoflakes by hydrothermolysis and solvothermolysis. Renew Energy 154:1204–1217. https://doi.org/10.1016/j.renene.2020.03.070

    Article  CAS  Google Scholar 

  24. Sommersacher P, Kienzl N, Evic N, Hochenauer C (2018) The influence of torrefaction on the combustion behavior of selected agricultural and waste-Derived solid biomass fuels. In: Chemical Engineering Transactions. The Italian Association of Chemical Engineering, Italy, pp 361–366

  25. Peng JH, Bi HT, Sokhansanj S, Lim JC (2012) A study of particle size effect on biomass torrefaction and densification. Energy Fuels 26:3826–3839. https://doi.org/10.1021/ef3004027

    Article  CAS  Google Scholar 

  26. Zhai M, Guo L, Zhang Y et al (2016) Kinetic parameters of biomass pyrolysis by TGA. BioRes 11:8548–8557. https://doi.org/10.15376/biores.11.4.8548-8557

  27. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  28. Patel M, Oyedun AO, Kumar A, Gupta R (2019) Predicting the biomass conversion performance in a fluidized bed reactor using isoconversional model-free method. Can J Chem Eng 97:1263–1273. https://doi.org/10.1002/cjce.23397

    Article  CAS  Google Scholar 

  29. He C, Tang C, Li C et al (2018) Wet torrefaction of biomass for high quality solid fuel production: a review. Renew Sust Energ Rev 91:259–271. https://doi.org/10.1016/j.rser.2018.03.097

    Article  CAS  Google Scholar 

  30. Park J-H, Choi Y-C, Lee Y-J, Kim H-T (2020) Characteristics of miscanthus fuel by wet torrefaction on fuel upgrading and gas emission behavior. Energies 13:2669. https://doi.org/10.3390/en13102669

    Article  CAS  Google Scholar 

  31. Kongto P, Palamanit A, Chaiprapat S, Tippayawong N (2021) Enhancing the fuel properties of rubberwood biomass by moving bed torrefaction process for further applications. Renew Energy 170:703–713. https://doi.org/10.1016/j.renene.2021.02.012

    Article  CAS  Google Scholar 

  32. Zaini IN, Novianti S, Nurdiawati A et al (2017) Investigation of the physical characteristics of washed hydrochar pellets made from empty fruit bunch. Fuel Process Technol 160:109–120. https://doi.org/10.1016/j.fuproc.2017.02.020

    Article  CAS  Google Scholar 

  33. Kongto Pumin, Palamanit Arkom, Tippayawong Nakorn, Chaiprapat Sumate (2020) Biomass torrefaction technology for producing high quality solid biofuels. CMUJ of Nat Sci 27:121–150. http://cmuir.cmu.ac.th/jspui/handle/6653943832/69830

  34. ASTM. D7582–15 (2015) Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428–2959, United States, 9 pp

  35. Wang Y, Qiu L, Zhu M et al (2019) Comparative evaluation of hydrothermal carbonization and low temperature pyrolysis of eucommia ulmoides oliver for the production of solid biofuel. Sci Rep 9:5535. https://doi.org/10.1038/s41598-019-38849-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sözer M, Haykiri-Acma H, Yaman S (2021) Prediction of calorific value of coal by multilinear regression and analysis of variance. J Energy Resour Technol 144:012103. https://doi.org/10.1115/1.4050880

    Article  CAS  Google Scholar 

  37. Yang W, Wu S, Wang H et al (2017) Effect of wet and dry torrefaction process on fuel properties of solid fuels derived from bamboo and Japanese cedar. BioRes 12:8629–8640. https://doi.org/10.15376/biores.12.4.8629-8640

  38. Basu P (2013) Biomass Characteristics. In: Basu P (ed) Biomass gasification, pyrolysis and torrefaction, 2nd edn. Academic Press, Boston, pp 47–86

    Chapter  Google Scholar 

  39. Naderi M, Vesali-Naseh M (2021) Hydrochar-derived fuels from waste walnut shell through hydrothermal carbonization: characterization and effect of processing parameters. Biomass Conv Bioref 11:1443–1451. https://doi.org/10.1007/s13399-019-00513-2

    Article  CAS  Google Scholar 

  40. Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Technol 40:426–432. https://doi.org/10.1016/j.enzmictec.2006.07.015

    Article  CAS  Google Scholar 

  41. Novaes E, Kirst M, Chiang V et al (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees1. Plant Physiol 154:555–561. https://doi.org/10.1104/pp.110.161281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Owonubi SJ, Agwuncha SC, Malima NM et al (2021) Non-woody biomass as sources of nanocellulose particles: a review of extraction procedures. Front Energy Res 9:608825. https://doi.org/10.3389/fenrg.2021.608825

    Article  Google Scholar 

  43. Singh R, Bhaskar T, Balagurumurthy B (2014) Hydrothermal upgradation of algae into value-added hydrocarbons. In: Pandey A, Lee D-J, Chisti Y, Soccol CR (eds) Biofuels from Algae. Elsevier, Amsterdam, pp 235–260

    Chapter  Google Scholar 

  44. Kumar S (2010) Hydrothermal treatment for biofuels: lignocellulosic biomass to bioethanol, biocrude, and biochar. Dissertation, Auburn University

  45. Y. Gultekin S, Olgun H, S. Celiktas M (2018) Comparison of solid biofuels produced from olive pomace with two different conversion methods: torrefaction and hydrothermal carbonization. IJET 7:143. https://doi.org/10.14419/ijet.v7i2.23.11903

  46. Sun Y, He Z, Tu R et al (2019) The mechanism of wet/dry torrefaction pretreatment on the pyrolysis performance of tobacco stalk. Bioresour Technol 286:121390. https://doi.org/10.1016/j.biortech.2019.121390

    Article  CAS  PubMed  Google Scholar 

  47. Pala M, Kantarli IC, Buyukisik HB, Yanik J (2014) Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation. Bioresour Technol 161:255–262. https://doi.org/10.1016/j.biortech.2014.03.052

    Article  CAS  PubMed  Google Scholar 

  48. Tran K-Q, Luo X, Seisenbaeva G, Jirjis R (2013) Stump torrefaction for bioenergy application. Appl Energy 112:539–546. https://doi.org/10.1016/j.apenergy.2012.12.053

    Article  Google Scholar 

  49. Granados DA, Ruiz RA, Vega LY, Chejne F (2017) Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process. Energy 139:818–827. https://doi.org/10.1016/j.energy.2017.08.013

    Article  CAS  Google Scholar 

  50. Singh S, Chakraborty JP, Mondal MK (2020) Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel. Renew Energy 153:711–724. https://doi.org/10.1016/j.renene.2020.02.037

    Article  CAS  Google Scholar 

  51. Siruru H, Syafii W, Wistara INJ et al (2020) Properties of sago waste charcoal using hydrothermal and pyrolysis carbonization. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00983-9

    Article  Google Scholar 

  52. Krysanova K, Krylova A, Zaichenko V (2019) Properties of biochar obtained by hydrothermal carbonization and torrefaction of peat. Fuel 256:115929. https://doi.org/10.1016/j.fuel.2019.115929

    Article  CAS  Google Scholar 

  53. Merzari F, Lucian M, Volpe M et al (2018) Hydrothermal carbonization of biomass: design of a bench- scale reactor for evaluating the heat of reaction. Chem Eng Trans 65:43–48. https://doi.org/10.3303/CET1865008

    Article  Google Scholar 

  54. Fakkaew K, Koottatep T, Pussayanavin T, Polprasert C (2015) Hydrochar production by hydrothermal carbonization of faecal sludge. J Water Sanit Hyg Dev 5:439–447. https://doi.org/10.2166/washdev.2015.017

    Article  Google Scholar 

  55. Mohammed IS, Na R, Kushima K, Shimizu N (2020) Investigating the effect of processing parameters on the products of hydrothermal carbonization of corn stover. Sustainability 12:5100. https://doi.org/10.3390/su12125100

    Article  CAS  Google Scholar 

  56. Yadav K, Tyagi M, Kumari S, Jagadevan S (2019) Influence of process parameters on optimization of biochar fuel characteristics derived from rice husk: a promising alternative solid fuel. Bioenerg Res 12:1052–1065. https://doi.org/10.1007/s12155-019-10027-4

    Article  CAS  Google Scholar 

  57. González Martínez M, Hélias E, Ratel G et al (2021) Torrefaction of woody and agricultural biomass: influence of the presence of water vapor in the gaseous atmosphere. Process 9:30. https://doi.org/10.3390/pr9010030

    Article  CAS  Google Scholar 

  58. Dai J, Sokhansanj S, Grace JR et al (2008) Overview and some issues related to co-firing biomass and coal. Can J Chem Eng 86:367–386. https://doi.org/10.1002/cjce.20052

    Article  CAS  Google Scholar 

  59. Anukam A, Mamphweli S, Reddy P et al (2015) An investigation into the impact of reaction temperature on various parameters during torrefaction of sugarcane bagasse relevant to gasification. J Chem 2015:235163. https://doi.org/10.1155/2015/235163

    Article  CAS  Google Scholar 

  60. Shehzad M, Asghar A, Ramzan N et al (2020) Impacts of non-oxidative torrefaction conditions on the fuel properties of indigenous biomass (bagasse). Waste Manag Res 38:1284–1294. https://doi.org/10.1177/0734242X20916843

    Article  CAS  PubMed  Google Scholar 

  61. Singh S, Chakraborty JP, Mondal MK (2020) Torrefaction of acacia nilotica: oxygen distribution and carbon densification mechanism based on in-depth analyses of solid, liquid, and gaseous products. Energy Fuels 34:12586–12597. https://doi.org/10.1021/acs.energyfuels.0c01673

    Article  CAS  Google Scholar 

  62. Li Y, Li L, Liu Y et al (2020) Sulfur and nitrogen release from co-pyrolysis of coal and biomass under oxidative and non-oxidative conditions. J Energy Resour Technol 143:061304. https://doi.org/10.1115/1.4048525

    Article  CAS  Google Scholar 

  63. Tumuluru JS (2015) Comparison of chemical composition and energy property of torrefied switchgrass and corn stover. Front Energy Res 3:46. https://doi.org/10.3389/fenrg.2015.00046

    Article  Google Scholar 

  64. Reza MT, Uddin MH, Lynam JG, Coronella CJ (2014) Engineered pellets from dry torrefied and HTC biochar blends. Biomass Bioenrg 63:229–238. https://doi.org/10.1016/j.biombioe.2014.01.038

    Article  CAS  Google Scholar 

  65. Zheng A, Zhao Z, Chang S et al (2015) Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresour Technol 176:15–22. https://doi.org/10.1016/j.biortech.2014.10.157

    Article  CAS  PubMed  Google Scholar 

  66. Tu R, Jiang E, Yan S et al (2018) The pelletization and combustion properties of torrefied camellia shell via dry and hydrothermal torrefaction: a comparative evaluation. Bioresour Technol 264:78–89. https://doi.org/10.1016/j.biortech.2018.05.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Physics, Faculty of Science and Technology, Rajabhat Mahasarakham University and Energy Innovation and Heat Pipe Technology Research Unit (EIHTR), Faculty of Science, Mahasarakham University, for research support.

Funding

This research was financially supported by Faculty of Science, Mahasarakham University (Grant year 2021).

Author information

Authors and Affiliations

Authors

Contributions

Jarunee Khempila: conceptualization, methodology, resources, investigation, data curation, writing—original draft. Pumin Kongto: review and editing. Pattanapol Meena: supervision.

Corresponding author

Correspondence to Pattanapol Meena.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication.

All authors agree to publish this article in BioEnergy Research.

Conflict of interest

The authors declare no competing interests.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khempila, J., Kongto, P. & Meena, P. Comparative study of solid biofuels derived from sugarcane leaves with two different thermochemical conversion methods: wet and dry torrefaction. Bioenerg. Res. 15, 1265–1280 (2022). https://doi.org/10.1007/s12155-021-10348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10348-3

Keywords

Navigation