Skip to main content

Advertisement

Log in

Influence of Process Parameters on Optimization of Biochar Fuel Characteristics Derived from Rice Husk: a Promising Alternative Solid Fuel

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Process parameters play a crucial role in governing the physical and chemical properties of biochar. An optimization tool, response surface methodology (central composite design) was employed to identify the linear and interaction effects of process parameters (temperature, heating rate and time) on selected responses, namely biochar yield, higher heating value, energy density and energy yield of biochar. The optimized values for temperature, heating rate and time were found to be 432 °C, 4 °C/min and 40 min respectively. At these optimized conditions, the biochar yield, higher heating value, energy density and energy yield of biochar were found to be 54.65%, 25.08 MJ/kg, 1.46 and 79.66% respectively. The fuel ratio of optimized biochar was found to be 2.10 which is near to that of bituminous coal having fuel ratio in range of 1.5 to 2.0. This study performs an in-depth qualitative and quantitative analysis of the synthesized biochar so as to ensure higher yield and improved quality of solid fuel for possible practical utility. The thermal conversion of biomass can therefore be a potential route to provide an economically viable, clean and environment friendly source of good quality solid fuel through utilization of biomass or biomass-derived waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhattacharyya SC, Asia S (2014) Viability of off-grid electricity supply using rice husk : a case study from South Asia. Biomass Bioenergy 8:44–54. https://doi.org/10.1016/j.biombioe.2014.06.002

    Article  Google Scholar 

  2. Zhao N, Li B-X (2016) The effect of sodium chloride on the pyrolysis of rice husk. Appl Energy 178:346–352. https://doi.org/10.1016/j.apenergy.2016.06.082

    Article  CAS  Google Scholar 

  3. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140. https://doi.org/10.1016/j.rser.2015.12.185

    Article  CAS  Google Scholar 

  4. Yadav K, Jagadevan S (2019) Influence of process parameters on synthesis of biochar by pyrolysis of biomass: an alternative source of energy. In: Pyrolysis. IntechOpen, pp 1–14. https://doi.org/10.5772/intechopen.88204

    Google Scholar 

  5. Demirbas A, Caglar A, Akdeniz F, Gullu D (2010) Conversion of olive husk to liquid fuel by pyrolysis and catalytic liquefaction. Energy Sources 22:631–639. https://doi.org/10.1080/00908310050045582

    Article  Google Scholar 

  6. Rajapaksha AU, Chen SS, Tsang DCW, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered /designer biochar for contaminant removal /immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291. https://doi.org/10.1016/j.chemosphere.2016.01.043

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira FR, Patel AK, Kumar S et al (2017) Environmental application of biochar : current status and perspectives. Bioresour Technol 246:110–122. https://doi.org/10.1016/j.biortech.2017.08.122

    Article  CAS  PubMed  Google Scholar 

  8. Zhang K, Cheng X, Dang H, Ye C, Zhang Y, Zhang Q (2013) Linking litter production, quality and decomposition to vegetation succession following agricultural abandonment. Soil Biol Biochem 57:803–813. https://doi.org/10.1016/j.soilbio.2012.08.005

    Article  CAS  Google Scholar 

  9. Anupam K, Sharma AK, Lal PS, Dutta S, Maity S (2016) Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding. Energy 106:743–756. https://doi.org/10.1016/j.energy.2016.03.100

    Article  CAS  Google Scholar 

  10. Wang T, Zhai Y, Zhu Y, Li C, Zeng G (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sust Energ Rev 90:223–247. https://doi.org/10.1016/j.rser.2018.03.071

    Article  CAS  Google Scholar 

  11. Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481. https://doi.org/10.1016/j.rser.2015.10.122

    Article  CAS  Google Scholar 

  12. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–23. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  CAS  PubMed  Google Scholar 

  13. Liu Z, Quek A, Kent Hoekman S, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949. https://doi.org/10.1016/j.fuel.2012.07.069

    Article  CAS  Google Scholar 

  14. Kung CC, Zhang N (2015) Renewable energy from pyrolysis using crops and agricultural residuals: an economic and environmental evaluation. Energy 90:1532–1544. https://doi.org/10.1016/j.energy.2015.06.114

    Article  CAS  Google Scholar 

  15. Jeguirim M, Bikai J, Elmay Y, Limousy L, Njeugna E (2014) Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy Sustain Dev 23:188–193. https://doi.org/10.1016/j.esd.2014.09.009

    Article  CAS  Google Scholar 

  16. Mašek O, Brownsort P, Cross A, Sohi S (2013) Influence of production conditions on the yield and environmental stability of biochar. Fuel 103:151–155. https://doi.org/10.1016/j.fuel.2011.08.044

    Article  CAS  Google Scholar 

  17. Gil MV, Riaza J, Álvarez L, Pevida C, Rubiera F (2015) Biomass devolatilization at high temperature under N2 and CO2: char morphology and reactivity. Energy 91:655–662. https://doi.org/10.1016/j.energy.2015.08.074

    Article  CAS  Google Scholar 

  18. Lin L, Yan R, Liu Y, Jiang W (2010) In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin. Bioresour Technol 101:8217–8223. https://doi.org/10.1016/j.biortech.2010.05.084

    Article  CAS  PubMed  Google Scholar 

  19. Yavari S, Malakahmad A, Sapari NB, Yavari S (2017) Sorption properties optimization of agricultural wastes-derived biochars using response surface methodology. Process Saf Environ Prot 109:509–519. https://doi.org/10.1016/j.psep.2017.05.002

    Article  CAS  Google Scholar 

  20. Zhang C, Yang L, Rong F, Fu D, Gu Z (2012) Boron-doped diamond anodic oxidation of ethidium bromide: process optimization by response surface methodology. Electrochim Acta 64:100–109. https://doi.org/10.1016/j.electacta.2011.12.122

    Article  CAS  Google Scholar 

  21. Zhao B, Connor DO, Zhang J et al (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987

    Article  CAS  Google Scholar 

  22. Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88:523–531. https://doi.org/10.1016/j.fuproc.2007.01.001

    Article  CAS  Google Scholar 

  23. Isa KM, Daud S, Hamidin N, Ismail K, Saad SA, Kasim FH (2011) Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Ind Crop Prod 33:481–487. https://doi.org/10.1016/j.indcrop.2010.10.024

    Article  CAS  Google Scholar 

  24. Yavari S, Malakahmad A, Sapari NB, Yavari S (2017) Synthesis optimization of oil palm empty fruit bunch and rice husk biochars for removal of imazapic and imazapyr herbicides. J Environ Manag 193:201–210. https://doi.org/10.1016/j.jenvman.2017.02.035

    Article  CAS  Google Scholar 

  25. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  26. Tyagi M, Rana A, Kumari S, Jagadevan S (2018) Adsorptive removal of cyanide from coke oven wastewater onto zero-valent iron: optimization through response surface methodology, isotherm and kinetic studies. J Clean Prod 178:398–407. https://doi.org/10.1016/j.jclepro.2018.01.016

    Article  CAS  Google Scholar 

  27. Mondal P, Mehta D, George S (2016) Defluoridation studies with synthesized magnesium-incorporated hydroxyapatite and parameter optimization using response surface methodology. Desalin Water Treat 57:27294–27313. https://doi.org/10.1080/19443994.2016.1167628

    Article  CAS  Google Scholar 

  28. Wang Y, Qiu L, Zhang T, Yang X, Kang K (2019) Optimization of carbonization process for the production of solid biofuel from corn stalk using response surface methodology. Bioenerg Res 12:184–196. https://doi.org/10.1007/s12155-018-9955-7

    Article  CAS  Google Scholar 

  29. Mesroghli S, Jorjani E, Chehreh Chelgani S (2009) Estimation of gross calorific value based on coal analysis using regression and artificial neural networks. Int J Coal Geol 79:49–54. https://doi.org/10.1016/j.coal.2009.04.002

    Article  CAS  Google Scholar 

  30. Waqas M, Aburiazaiza AS, Miandad R, Rehan M, Barakat MA, Nizami AS (2018) Development of biochar as fuel and catalyst in energy recovery technologies. J Clean Prod 188:477–488. https://doi.org/10.1016/j.jclepro.2018.04.017

    Article  CAS  Google Scholar 

  31. Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/j.biortech.2012.05.042

    Article  CAS  PubMed  Google Scholar 

  32. Devi P, Saroha AK (2015) Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge. Bioresour Technol 192:312–320. https://doi.org/10.1016/j.biortech.2015.05.084

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Liu J, Liu R (2015) Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour Technol 176:288–291. https://doi.org/10.1016/j.biortech.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  34. Intani K, Latif S, Kabir AKMR, Müller J (2016) Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresour Technol 218:541–551. https://doi.org/10.1016/j.biortech.2016.06.114

    Article  CAS  PubMed  Google Scholar 

  35. Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018

    Article  CAS  PubMed  Google Scholar 

  36. Kurose R, Ikeda M, Makino H, Kimoto M, Miyazaki T (2004) Pulverized coal combustion characteristics of high-fuel-ratio coals. Fuel 83:1777–1785. https://doi.org/10.1016/j.fuel.2004.02.021

    Article  CAS  Google Scholar 

  37. Budai A, Wang L, Gronli M, Strand LT, Antal MJ Jr, Abiven S, Dieguez-Alonso A, Anca-Couce A, Rasse DP (2014) Surface properties and chemical composition of corncob and miscanthus biochars: effects of production temperature and method. J Agric Food Chem 62:3791–3799. https://doi.org/10.1021/jf501139f

    Article  CAS  PubMed  Google Scholar 

  38. Chen B, Zhou D (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143

    Article  CAS  Google Scholar 

  39. Li L, Quinlivan PA, Knappe DRU (2002) Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40:2085–2100. https://doi.org/10.1016/S0008-6223(02)00069-6

    Article  CAS  Google Scholar 

  40. Kumar S, Masto RE, Ram LC, Sarkar P, George J, Selvi VA (2013) Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecol Eng 55:67–72. https://doi.org/10.1016/j.ecoleng.2013.02.011

    Article  Google Scholar 

  41. Sharma RK, Wooten JB, Baliga VL, Lin X, Geoffrey Chan W, Hajaligol MR (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482. https://doi.org/10.1016/j.fuel.2003.11.015

    Article  CAS  Google Scholar 

  42. Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510

    Article  CAS  Google Scholar 

  43. Ayllón M, Aznar M, Sánchez JL et al (2006) Influence of temperature and heating rate on the fixed bed pyrolysis of meat and bone meal. Chem Eng J 121:85–96. https://doi.org/10.1016/j.cej.2006.04.013

    Article  CAS  Google Scholar 

  44. Cetin E, Moghtaderi B, Gupta R, Wall TF (2004) Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83:2139–2150. https://doi.org/10.1016/j.fuel.2004.05.008

    Article  CAS  Google Scholar 

  45. Kadlimatti HM, Mohan BR, Saidutta MB (2019) Bio-oil from microwave assisted pyrolysis of food waste-optimization using response surface methodology. Biomass Bioenergy 123:25–33. https://doi.org/10.1016/j.biombioe.2019.01.014

    Article  CAS  Google Scholar 

  46. Saikia R, Baruah B, Kalita D, Pant KK, Gogoi N, Kataki R (2018) Pyrolysis and kinetic analyses of a perennial grass (Saccharum ravannae L.) from north-east India: optimization through response surface methodology and product characterization. Bioresour Technol 253:304–314. https://doi.org/10.1016/j.biortech.2018.01.054

    Article  CAS  PubMed  Google Scholar 

  47. Williams PT, Nugranad N (2000) Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25:493–513. https://doi.org/10.1016/S0360-5442(00)00009-8

    Article  CAS  Google Scholar 

  48. Aysu T, Küçük MM (2014) Biomass pyrolysis in a fixed-bed reactor: effects of pyrolysis parameters on product yields and characterization of products. Energy 64:1002–1025. https://doi.org/10.1016/j.energy.2013.11.053

    Article  CAS  Google Scholar 

  49. Hmid A, Mondelli D, Fiore S, Fanizzi FP, al Chami Z, Dumontet S (2014) Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis. Biomass Bioenergy 71:330–339. https://doi.org/10.1016/j.biombioe.2014.09.024

    Article  CAS  Google Scholar 

  50. Huang YF, Cheng PH, Te Chiueh P, Lo SL (2017) Leucaena biochar produced by microwave torrefaction: fuel properties and energy efficiency. Appl Energy 204:1018–1025. https://doi.org/10.1016/j.apenergy.2017.03.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank DST-FIST for the support to the Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad.

Funding

This research was supported by FRS Scheme of IIT(ISM) (Ref No. FRS/86/2014-2015/ESE) and PhD studentship for K.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheeja Jagadevan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, K., Tyagi, M., Kumari, S. et al. Influence of Process Parameters on Optimization of Biochar Fuel Characteristics Derived from Rice Husk: a Promising Alternative Solid Fuel. Bioenerg. Res. 12, 1052–1065 (2019). https://doi.org/10.1007/s12155-019-10027-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-10027-4

Keywords

Navigation