Skip to main content

Advertisement

Log in

Production Chain of First-Generation Sugarcane Bioethanol: Characterization and Value-Added Application of Wastes

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The search for energy security and environmental sustainability has fueled a growing interest in biofuel production worldwide. Although first-generation bioethanol is regarded a clean, renewable, and green alternative to fossil fuels, its production process leads to the generation of a huge amount of waste with high polluting potential. This review article presents a thorough analysis of the production chain of sugarcane-based first-generation bioethanol and the chemical characterization of the wastes produced in this process. The sugarcane wastes analyzed in this work include three lignocellulosic materials, namely, sugarcane straw, bagasse, and filter press mud; bagasse ash, a material rich in silica particles and other oxides; and vinasse, a material containing high concentrations of organic matter and diverse nutrients. Considering the negative impacts of the disposal and/or containment of wastes generated during the production of sugarcane bioethanol, the review will shed light on the current value-added uses of these wastes and their potential for the development of highly innovative products. The current value-added uses of these wastes include tapping the energy present in straw and bagasse, by burning them in furnaces of bioethanol refineries, and the application of bagasse ash, filter press mud, and vinasse in agriculture as fertilizers and soil additives. With regard to the innovative application of bioethanol wastes, bagasse can be used for the production of second-generation ethanol, while bagasse ash can be employed as supplementary input for the production of construction materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kim S, Zhang X, Reddy AD et al (2020) Carbon-negative biofuel production. Environ Sci Technol 54:10797–10807. https://doi.org/10.1021/acs.est.0c01097

    Article  CAS  PubMed  Google Scholar 

  2. Roland AL, Jean-Michel L (2013) From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Anim Front 3:6–11. https://doi.org/10.2527/af.2013-0010

    Article  Google Scholar 

  3. Kiatkittipong W, Wongsuchoto P, Pavasant P (2009) Life cycle assessment of bagasse waste management options. Waste Manag 29:1628–1633. https://doi.org/10.1016/j.wasman.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  4. Swain MR, Mohanty SK (2019) Bioethanol production from corn and wheat: food, fuel, and future. In: Ray RC, Ramachandran S (eds) Bioethanol production from food crops, 1st edn. Academic Press, Cambridge, pp 45–79

  5. Benbi DK, Thind HS, Sharma S et al (2017) Bagasse ash application stimulates agricultural soil c sequestration without inhibiting soil enzyme activity. Commun Soil Sci Plant Anal 48:1822–1833. https://doi.org/10.1080/00103624.2017.1395455

    Article  CAS  Google Scholar 

  6. Kumar A, Anand R (2019) Progress in biofuel generation and its application in fuel cell. In: Azad AK, Rasul M (ed) Advanced biofuels: applications, technologies and environmental sustainability. 1st edn. Woodhead Publishing, Sawston, pp 371–403

  7. Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA (2016) Biofuel production : challenges and opportunities. Int J Hydrogen Energy 42:8450–8461. https://doi.org/10.1016/j.ijhydene.2016.11.125

    Article  CAS  Google Scholar 

  8. Moore KA (2016) Discussion on uses of the specification for fuel ethanol for blending (ASTM D4806). In: Rand S, Verstuyft A (ed) Fuels specifications: what they are, why we have them and how they are used, 1st edn. ASTM International, pp 23–26. https://doi.org/10.1520/MNL6920150010

  9. Jeswani HK, Chilvers A, Azapagic A (2020) Environmental sustainability of biofuels: a review: environmental sustainability of biofuels. Proc R Soc A Math Phys Eng Sci 476:20200351. https://doi.org/10.1098/rspa.2020.0351

    Article  Google Scholar 

  10. Tyagi S, Lee KJ, Mulla SI, et al (2019) Production of bioethanol from sugarcane bagasse: current approaches and perspectives. In: Shukla P (ed) Applied microbiology and bioengineering. 1st edn. Academic Press, Cambridge, pp 21–42.

  11. Maga D, Thonemann N, Hiebel M et al (2019) Comparative life cycle assessment of first- and second-generation ethanol from sugarcane in Brazil. Int J Life Cycle Assess 24:266–280. https://doi.org/10.1007/s11367-018-1505-1

    Article  CAS  Google Scholar 

  12. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27. https://doi.org/10.1016/j.renene.2011.06.045

    Article  CAS  Google Scholar 

  13. Trombeta NC, Filho JVC (2017) Potencial e disponibilidade de biomassa de cana-de-açúcar na Região Centro-Sul do Brasil: indicadores agroindustriais. Rev Econ Sociol Rural 55:479–496. https://doi.org/10.1590/1234-56781806-94790550304

    Article  Google Scholar 

  14. Benyahia F, ElJack F. Advances in gas processing. Proceedings of the 2nd Annual gas processing symposium, 2nd edn., Elsevier, Qatar, 2010. https://doi.org/10.1016/C2009-0-61941-3

  15. Bonassa G, Schneider LT, Frigo KDA et al (2015) Subprodutos gerados na produção de bioetanol: bagaço, torta de filtro, água de lavagem e palhagem. Rev Bras Energias Renov 4:144–166. https://doi.org/10.5380/rber.v4i3.44075

    Article  Google Scholar 

  16. González-García S, Moreira MT, Feijoo G (2012) Environmental aspects of eucalyptus based ethanol production and use. Sci Total Environ 438:1–8. https://doi.org/10.1016/j.scitotenv.2012.07.044

    Article  CAS  PubMed  Google Scholar 

  17. Vadas PA, Barnett KH, Undersander DJ (2008) Economics and energy of ethanol production from alfalfa, corn, and switchgrass in the upper midwest, USA. BioEnergy Res 1:44–55. https://doi.org/10.1007/s12155-008-9002-1

    Article  Google Scholar 

  18. OECD/FAO, 2018, OECD-FAO Agricultural Outlook 2018–2027: Biofuel, OECD Publishing, Paris/Food and Agriculture Organization of the United Nations, Rome. https://stats.oecd.org/index.aspx?queryid=84952. Accessed 27 Apr 2021

  19. Michailos SE, Webb C (2019) Biorefinery approach for ethanol production from bagasse. Bioethanol Prod Food Crops 16:319–342. https://doi.org/10.1016/B978-0-12-813766-6.00016-3

    Article  Google Scholar 

  20. FAOSTAT (2020) The food and Agriculture Organization (FAO)/Crops: World: Sugarcane: Production Quantity: 1988–2019. http://www.fao.org/faostat/en/?#data/QC. Accessed 20 Apr 2020

  21. OECD/FAO, 2019, OECD-FAO Agricultural Outlook 2019–2028, Chapter 9. Biofuels, OECD Publishing, Paris/Food and Agriculture Organization of the United Nations, Rome. https://doi.org/10.1787/19991142. https://www.oecd-ilibrary.org/docserver/e8ff7c1a-en.pdf?expires=1623524995&id=id&accname=guest&checksum=395315B758DC2B2C238A587751870A1D. Accessed 27 Apr 2021

  22. Jústiz-Smith NG, Virgo GJ, Buchanan VE (2008) Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Mater Charact 59:1273–1278. https://doi.org/10.1016/j.matchar.2007.10.011

    Article  CAS  Google Scholar 

  23. Payá J, Monzó J, Borrachero MV et al (2018) Bagasse ash. Waste and Supplementary Cementitious Materials in Concrete, 17:559-5598.https://doi.org/10.1016/B978-0-08-102156-9.00017-1

  24. Mukherjee SK (2012) Origin and distribution of Saccharum. Bot Gaz, 119:55–61. http://www.jstor.org/stable/2473264. Accessed 12 May 2020

  25. Zhang M, Govindaraju M (2018) Sugarcane production in China. Sugarcane Technol Res. https://doi.org/10.5772/intechopen.73113

    Article  Google Scholar 

  26. Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 36:2086–2097. https://doi.org/10.1016/j.enpol.2008.02.028

    Article  Google Scholar 

  27. Negrete JC (2019) Law for the prohibition of the burning of sugarcane in Mexico. Acta Sci Agric 3:171–174. ISSN: 2581–365X

  28. Rípoli TCC, Molina WF Jr, Rípoli MLC (2000) Energy potential of sugarcane biomass in Brazil. Sci Agric 57:677–681. https://doi.org/10.1590/S0103-90162000000400013

    Article  Google Scholar 

  29. Dotaniya ML, Datta SC, Biswas DR et al (2016) Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int J Recycl Org Waste Agric 5:185–194. https://doi.org/10.1007/s40093-016-0132-8

    Article  Google Scholar 

  30. Griffin WM, Saville BA, MacLean HL (2016) Ethanol use in the United States: status, threats and the potential future. Glob Bioethanol Evol Risks Uncertainties 2:34–62. https://doi.org/10.1016/B978-0-12-803141-4.00002-2

    Article  Google Scholar 

  31. Xavier WD, Silva DC, da Costa RB et al (2020) Losses in the mechanized harvesting of sugarcane as of speed function of two harvester models in tropical savanna environment. Aust J Crop Sci 14:675–682. https://doi.org/10.21475/ajcs.20.14.04.p2338

    Article  CAS  Google Scholar 

  32. Poddar PK, Sahu O (2015) Quality and management of wastewater in sugar industry. Appl Water Sci 7:461–468. https://doi.org/10.1007/s13201-015-0264-4

    Article  CAS  Google Scholar 

  33. Rabelo SC, da Costa AC, Vaz Rossel CE (2015) Industrial waste recovery. Sugarcane: Agricultural Production. Bioenergy and Ethanol 17:365–381. https://doi.org/10.1016/B978-0-12-802239-9.00017-7

    Article  Google Scholar 

  34. O'Hara I, Mundree S. Sugarcane-based biofuels and bioproducts. Wiley, 408 p. https://doi.org/10.1002/9781118719862.

  35. Katakojwala R, Kumar AN, Chakraborty SK et al (2019) Valorization of sugarcane waste: prospects of a biorefinery. Industrial and Municipal Sludge 47–60https://doi.org/10.1016/b978-0-12-815907-1.00003-9

  36. Saleh-E-In M, Yeasmin S, Paul BK et al (2012) Chemical studies on press mud: a sugar industries waste in Bangladesh. Sugar Tech 14:109–118. https://doi.org/10.1007/s12355-012-0139-z

    Article  CAS  Google Scholar 

  37. Dias MOD, Maciel Filho R, Mantelatto PE et al (2015) Sugarcane processing for ethanol and sugar in Brazil. Environ Dev 15:35–51. https://doi.org/10.1016/j.envdev.2015.03.004

    Article  Google Scholar 

  38. Santos F, Eichler P, Machado G et al (2020) By-products of the sugarcane industry. Sugarcane Biorefinery Technol Perspect 2:21–48. https://doi.org/10.1016/B978-0-12-814236-3.00002-0

    Article  Google Scholar 

  39. Reddy LV, Reddy LP, Wee YJ et al (2011) Production and characterization of wine with sugarcane piece immobilized yeast biocatalyst. Food Bioprocess Technol 4:142–148. https://doi.org/10.1007/s11947-009-0321-9

    Article  CAS  Google Scholar 

  40. Pimentel LG, Cherubin MR, Oliveira DMS et al (2019) Decomposition of sugarcane straw: basis for management decisions for bioenergy production. Biomass Bioenergy 122:133–144. https://doi.org/10.1016/j.biombioe.2019.01.027

    Article  CAS  Google Scholar 

  41. Rasche L, Sos Del Diego R (2020) Pros and cons of sugarcane straw recovery in São Paulo. Bioenergy Res 13:147–156. https://doi.org/10.1007/s12155-019-10078-7

    Article  CAS  Google Scholar 

  42. Carvalho JLN, Nogueirol RC, Menandro LMS et al (2017) Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy 9:1181–1195. https://doi.org/10.1111/gcbb.12410

    Article  CAS  Google Scholar 

  43. Menandro L, Cantarella H, Franco H et al (2017) Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuel Bioprod Biorefin 3:488–504. https://doi.org/10.1002/bbb.1760

    Article  CAS  Google Scholar 

  44. Aquino GS, de Conti MC, da Costa DC et al (2017) Sugarcane straw management and its impact on production and development of ratoons. Ind Crops Prod 102:58–64. https://doi.org/10.1016/j.indcrop.2017.03.018

    Article  CAS  Google Scholar 

  45. Sousa JGA Jr, Cherubin MR, Cerri CEP et al (2017) Sugar cane straw left in the field during harvest: decomposition dynamics and composition changes. Soil Research 55:758–768. https://doi.org/10.1071/SR16310

    Article  CAS  Google Scholar 

  46. Costa SM, Mazzola PG, Silva JCAR et al (2013) Use of sugar cane straw as a source of cellulose for textile fiber production. Ind Crops Prod 42:189–194. https://doi.org/10.1016/j.indcrop.2012.05.028

    Article  CAS  Google Scholar 

  47. Trivelin PCO, Franco HCJ, Otto R et al (2013) Impact of sugarcane trash on fertilizer requirements for São Paulo. Brazil Sci Agric 70:345–352. https://doi.org/10.1590/S0103-90162013000500009

    Article  CAS  Google Scholar 

  48. Fortes C, Cesar P, Trivelin O, Cesar A (2012) Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass Bioenergy 42:189–198. https://doi.org/10.1016/j.biombioe.2012.03.011

    Article  CAS  Google Scholar 

  49. Soltangheisi A, Haygarth PM, Pavinato PS et al (2021) Long term sugarcane straw removal affects soil phosphorus dynamics. Soil Tillage Res 208:104898. https://doi.org/10.1016/j.still.2020.104898

    Article  Google Scholar 

  50. Menandro LMS, Cantarella H, Franco HCJ et al (2017) Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuel Bioprod Biorefin 11:488–504. https://doi.org/10.1002/bbb.1760

    Article  CAS  Google Scholar 

  51. Dussán KJ, Silva DDV, Moraes EJC et al (2014) Dilute-acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse. Chem Eng Trans 38:433–438. https://doi.org/10.3303/CET1438073

    Article  Google Scholar 

  52. Haghdan S, Renneckar S, Smith GD (2016) Sources of lignin. In: Lignin in polymer composites. 1st edn. Elsevier Inc, pp 1–11. https://doi.org/10.1016/B978-0-323-35565-0.00001-1

  53. Rezende CA, de Lima MA, Maziero P et al (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:1–18. https://doi.org/10.1186/1754-6834-4-54

    Article  CAS  Google Scholar 

  54. Hajiha H, Sain M (2015) The use of sugarcane bagasse fibres as reinforcements in composites. Biofiber Reinf Compos Mater 17:525–549. https://doi.org/10.1533/9781782421276.4.525

    Article  Google Scholar 

  55. Laluce C, Roldan IU, Pecoraro E et al (2019) Effects of pretreatment applied to sugarcane bagasse on composition and morphology of cellulosic fractions. Biomass Bioenergy 126:231–238. https://doi.org/10.1016/j.biombioe.2019.03.002

    Article  CAS  Google Scholar 

  56. Sanjuán R, Anzaldo J, Vargas J et al (2001) Morphological and chemical composition of pith and fibers from Mexican sugarcane bagasse. Holz Roh Werkst 59:447–450. https://doi.org/10.1007/s001070100236

    Article  Google Scholar 

  57. Khattab SMR, Watanabe T (2019) Bioethanol from sugarcane bagasse: status and perspectives. Bioethanol Prod Food Crops 10:187–212. https://doi.org/10.1016/B978-0-12-813766-6.00010-2

    Article  Google Scholar 

  58. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24. https://doi.org/10.1016/s0168-1656(97)00073-4

    Article  CAS  PubMed  Google Scholar 

  59. Szczerbowski D, Pitarelo AP, Zandoná Filho A, Ramos LP (2014) Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr Polym 114:95–101. https://doi.org/10.1016/j.carbpol.2014.07.052

    Article  CAS  PubMed  Google Scholar 

  60. Alves EF, Bose SK, Francis RC et al (2010) Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of methods. Carbohydr Polym 82:1097–1101. https://doi.org/10.1016/j.carbpol.2010.06.038

    Article  CAS  Google Scholar 

  61. Vallejos ME, Zambon MD, Area MC et al (2015) Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification. Ind Crops Prod 65:349–353. https://doi.org/10.1016/j.indcrop.2014.11.018

    Article  CAS  Google Scholar 

  62. Habibi Y, El-Zawawy WK, Ibrahim MM, Dufresne A (2008) Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos Sci Technol 68:1877–1885. https://doi.org/10.1016/j.compscitech.2008.01.008

    Article  CAS  Google Scholar 

  63. Ong KL, Li C, Li X et al (2019) Co-fermentation of glucose and xylose from sugarcane bagasse into succinic acid by Yarrowia lipolytica. Biochem Eng J. https://doi.org/10.1016/j.bej.2019.05.004

    Article  Google Scholar 

  64. Ramaraj R (2007) Mechanical and thermal properties of polypropylene/sugarcane Bagasse composites. Appl Polym Sci 103:3827–3832. https://doi.org/10.1002/app.25333

    Article  CAS  Google Scholar 

  65. Del Río JC, Lino AG, Colodette JL et al (2015) Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenergy 81:322–338. https://doi.org/10.1016/j.biombioe.2015.07.006

    Article  CAS  Google Scholar 

  66. Tewari JC, Malik K (2007) In situ laboratory analysis of sucrose in sugarcane bagasse using attenuated total reflectance spectroscopy and chemometrics. Int J Food Sci Technol 42:200–207. https://doi.org/10.1111/j.1365-2621.2006.01209.x

    Article  CAS  Google Scholar 

  67. Mirza SS, Qazi JI, Liang Y et al (2019) Growth characteristics and photofermentative biohydrogen production potential of purple non sulfur bacteria from sugar cane bagasse. Fuel 255:115805. https://doi.org/10.1016/j.fuel.2019.115805

    Article  CAS  Google Scholar 

  68. Carvalho M, Segundo VBDS, Medeiros MGD et al (2019). Carbon footprint of the generation of bioelectricity from sugarcane bagasse in a sugar and ethanol industry. Int J Glob Warm 17: 235–251. https://doi.org/10.1504/ijgw.2019.098495

  69. Cordeiro GC, Filho RDT, Fairbairn EMR, et al (2004) Influence of mechanical grinding on the pozzolanic activity of residual sugarcane bagasse ash. Int RILEM Conf Use Recycl Mater Build Struct 731–740.https://doi.org/10.1617/2912143756.081

  70. Ganesan K, Rajagopal K, Thangavel K (2007) Evaluation of bagasse ash as supplementary cementitious material. Cem Concr Compos 29:515–524. https://doi.org/10.1016/j.cemconcomp.2007.03.001

    Article  CAS  Google Scholar 

  71. Chusilp N, Jaturapitakkul C, Kiattikomol K (2009) Utilization of bagasse ash as a pozzolanic material in concrete. Constr Build Mater 23:3352–3358. https://doi.org/10.1016/j.conbuildmat.2009.06.030

    Article  Google Scholar 

  72. Imran M, Anwar Khan AR (2018) Characterization of agricultural waste sugarcane bagasse ash at 1100°C with various hours. Mater Today Proc 5:3346–3352. https://doi.org/10.1016/j.matpr.2017.11.577

    Article  CAS  Google Scholar 

  73. Schettino MAS, Holanda JNF (2015) Characterization of sugarcane bagasse ash waste for its use in ceramic floor tile. Procedia Mater Sci 8:190–196. https://doi.org/10.1016/j.mspro.2015.04.063

    Article  CAS  Google Scholar 

  74. Cordeiro GC, Andreão PV, Tavares LM (2019) Pozzolanic properties of ultrafine sugar cane bagasse ash produced by controlled burning. Heliyon 5:1–5. https://doi.org/10.1016/j.heliyon.2019.e02566

    Article  Google Scholar 

  75. Praveenkumar S, Sankarasubramanian G (2019) Mechanical and durability properties of bagasse ash-blended high-performance concrete. SN Appl Sci 1:1–7. https://doi.org/10.1007/s42452-019-1711-x

    Article  CAS  Google Scholar 

  76. Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E (2008) Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour Technol 99:6809–6816. https://doi.org/10.1016/j.biortech.2008.01.041

    Article  CAS  PubMed  Google Scholar 

  77. Zhang P, Liao W, Kumar A et al (2020) Characterization of sugarcane bagasse ash as a potential supplementary cementitious material: comparison with coal combustion fly ash. J Clean Prod 277:123834. https://doi.org/10.1016/j.jclepro.2020.123834

    Article  CAS  Google Scholar 

  78. Batool F, Masood A, Ali M (2020) Characterization of sugarcane bagasse ash as pozzolan and influence on concrete properties. Arab J Sci Eng 45:3891–3900. https://doi.org/10.1007/s13369-019-04301-y

    Article  CAS  Google Scholar 

  79. Jatav HS, Kumar S, Jinger D et al (2017) Use of pressmud compost for improving crop productivity and soil health. Int J Chem Stud 5:384–389

    Google Scholar 

  80. Sharma S, Sarkar S, Singh S, Singh RP (2017) Agricultural utilization of biosolids: a review on potential effects on soil and plant grown. Waste Manag 64:117–132. https://doi.org/10.1016/j.wasman.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  81. España-Gamboa E, Mijangos-Cortes J, Barahona-Perez L et al (2011) Vinasses: characterization and treatments. Waste Manag Res 29:1235–1250. https://doi.org/10.1177/0734242X10387313

    Article  CAS  PubMed  Google Scholar 

  82. Yang SD, Liu JX, Wu J et al (2013) Effects of vinasse and press mud application on the biological properties of soils and productivity of sugarcane. Sugar Tech 15:152–158. https://doi.org/10.1007/s12355-012-0200-y

    Article  CAS  Google Scholar 

  83. Soto-Paz J, Oviedo-Ocaña ER, Manyoma PC et al (2019) Influence of mixing ratio and turning frequency on the co-composting of biowaste with sugarcane filter cake: a mixture experimental design. Waste Biomass Valor 11:2475–2489. https://doi.org/10.1007/s12649-019-00592-2

    Article  CAS  Google Scholar 

  84. López-González LM, Pereda Reyes I, Romero Romero O (2017) Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield. Waste Manag 68:139–145. https://doi.org/10.1016/j.wasman.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  85. Janke L, Leite AF, Nikolausz M et al (2016) Comparison of start-up strategies and process performance during semi-continuous anaerobic digestion of sugarcane filter cake co-digested with bagasse. Waste Manag 48:199–208. https://doi.org/10.1016/j.wasman.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  86. Nandy T, Shastry S, Kaul SN (2002) Wastewater management in a cane molasses distillery involving bioresource recovery. J Environ Manage 65:25–38. https://doi.org/10.1006/jema.2001.0505

    Article  PubMed  Google Scholar 

  87. Devia-Orjuela JS, Alvarez-Pugliese CE, Donneys-Victoria D et al (2019) Evaluation of press mud, vinasse powder and extraction sludge with ethanol in a pyrolysis process. Energies 12:1–21. https://doi.org/10.3390/en12214145

    Article  CAS  Google Scholar 

  88. Prado RDM, Caione G, Campos CNS (2013) Filter cake and vinasse as fertilizers contributing to conservation agriculture. Appl Environ Soil Sci 1–8.https://doi.org/10.1155/2013/581984

  89. Suresh BN, Reddy BSV (2011) Dried sugarcane press residue as a potential feed ingredient source of nutrients for poultry. Asian-Australas J Anim Biosci 24:1595–1600. https://doi.org/10.5713/ajas.2011.11054

    Article  CAS  Google Scholar 

  90. Cifuentes R, León R, Porres C et al (2013) Windrow composting of waste sugar cane and press mud mixtures. Sugar Tech 15:406–411. https://doi.org/10.1007/s12355-013-0217-x

    Article  Google Scholar 

  91. Bokhtia SM, Sakurai K (2005) Effects of organic manure and chemical fertilizer on soil fertility and productivity of plant and ratoon crops of sugarcane. Arch Agron Soil Sci 51:325–334. https://doi.org/10.1080/03650340500098006

    Article  Google Scholar 

  92. Fuess LT, Rodrigues IJ, Garcia ML (2017) Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization. J Environ Sci Heal A 52:1063–1072. https://doi.org/10.1080/10934529.2017.1338892

    Article  CAS  Google Scholar 

  93. Kannan N, Karthikeyan G, Tamilselvan N (2006) Comparison of treatment potential of electrocoagulation of distillery effluent with and without activated Areca catechu nut carbon. J Hazard Mater 137:1803–1809. https://doi.org/10.1016/j.jhazmat.2006.05.048

    Article  CAS  PubMed  Google Scholar 

  94. Navarro AR, Sepúlveda MC, Rubio MC (2000) Bio-concentration of vinasse from the alcoholic fermentation of sugar cane molasses. Waste Manag 20(7):581–585. https://doi.org/10.1016/S0956-053X(00)00026-X

    Article  CAS  Google Scholar 

  95. Buller LS, Romero CWS, Lamparelli RAC et al (2020) A spatially explicit assessment of sugarcane vinasse as a sustainable by-product. Sci Total Environ 765:142717. https://doi.org/10.1016/j.scitotenv.2020.142717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sarker TC, Azam SMGG, Bonanomi G (2017) Recent advances in sugarcane industry solid by-products valorization. Waste Biomass Valor 8:241–266. https://doi.org/10.1007/s12649-016-9665-3

    Article  CAS  Google Scholar 

  97. Leal MRLV, Galdos MV, Scarpare FV (2013) Sugarcane straw availability, quality, recovery and energy use: a literature review. Biomass Bioenergy 53:11–19. https://doi.org/10.1016/j.biombioe.2013.03.007

    Article  Google Scholar 

  98. Cherubin MR, Lisboa IP, Silva AGB et al (2019) Sugarcane straw removal: implications to soil fertility and fertilizer demand in Brazil. Bioenerg Res 12:888–900. https://doi.org/10.1007/s12155-019-10021-w

    Article  CAS  Google Scholar 

  99. Cherubin MR, Lisboa IP, Silva AGB et al (2020) Correction to: Sugarcane straw removal: implications to soil fertility and fertilizer demand in Brazil. Bioenerg Res 13:62. https://doi.org/10.1007/s12155-020-10096-w

    Article  Google Scholar 

  100. Carvalho JLN, Cerri CEP, Karlen DL (2019) Sustainable sugarcane straw special issue: considerations for brazilian bioenergy production. Bioenergy Res 12:746–748. https://doi.org/10.1007/s12155-019-10063-0

    Article  Google Scholar 

  101. Oliveira LRM, Nascimento VM, Gonçalves AR, Rocha GJM (2014) Combined process system for the production of bioethanol from sugarcane straw. Ind Crops Prod 58:1–7. https://doi.org/10.1016/j.indcrop.2014.03.037

    Article  CAS  Google Scholar 

  102. Carvalho DM, de Queiroz JH, Colodette JL (2016) Assessment of alkaline pretreatment for the production of bioethanol from eucalyptus, sugarcane bagasse and sugarcane straw. Ind Crops Prod 94:932–941. https://doi.org/10.1016/j.indcrop.2016.09.069

    Article  CAS  Google Scholar 

  103. Aguiar A, Milessi TS, Mulinari DR, et al (2021) Sugarcane straw as a potential second generation feedstock for biorefinery and white biotechnology applications. Biomass Bioenergy 144.https://doi.org/10.1016/j.biombioe.2020.105896

  104. Orduña Ortega J, Mora Vargas JA, Perrone OM et al (2020) Soaking and ozonolysis pretreatment of sugarcane straw for the production of fermentable sugars. Ind Crops Prod 145:111959. https://doi.org/10.1016/j.indcrop.2019.111959

    Article  CAS  Google Scholar 

  105. Silva ASA, Inoue H, Endo T et al (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:7402–7409. https://doi.org/10.1016/j.biortech.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  106. Barbosa FC, Kendrick E, Brenelli LB et al (2020) Optimization of cello-oligosaccharides production by enzymatic hydrolysis of hydrothermally pretreated sugarcane straw using cellulolytic and oxidative enzymes. Biomass Bioenergy 141:105697. https://doi.org/10.1016/j.biombioe.2020.105697

    Article  CAS  Google Scholar 

  107. Dodo CM, Mamphweli S, Okoh O (2017) Bioethanol production from lignocellulosic sugarcane leaves and tops. J Energ South Africa 28:1–11. https://doi.org/10.17159/2413-3051/2017/v28i3a2354

  108. Antunes FAF, Thomé LC, Santos JC et al (2021) Multi-scale study of the integrated use of the carbohydrate fractions of sugarcane bagasse for ethanol and xylitol production. Renew Energy 163:1343–1355. https://doi.org/10.1016/j.renene.2020.08.020

    Article  CAS  Google Scholar 

  109. Mesa L, Martínez Y, Celia de Armas A, González E (2020) Ethanol production from sugarcane straw using different configurations of fermentation and techno-economical evaluation of the best schemes. Renew Energy 156:377–388. https://doi.org/10.1016/j.renene.2020.04.091

    Article  CAS  Google Scholar 

  110. Jutakridsada P, Saengprachatanarug K, Kasemsiri P (2017) Bioconversion of saccharum officinarum leaves for ethanol production using separate hydrolysis and fermentation processes. Waste Biomass Valor 10:817–825. https://doi.org/10.1007/s12649-017-0104-x

    Article  CAS  Google Scholar 

  111. Hofsetz K, Silva MA (2012) Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass Bioenergy 46:564–573. https://doi.org/10.1016/j.biombioe.2012.06.038

    Article  Google Scholar 

  112. Mukesh KM, Nilay K, Alka BA (2014) Bagasse cogeneration in India: Status, Barriers. IOSR J Mech Civil Eng 11:69–78

    Article  Google Scholar 

  113. Melati RB, Schmatz AA, Pagnocca F, et al (2017) Sugarcane bagasse: production, composition, properties, and feedstock potential. In: Murphy R, (ed) Sugarcane: production systems, uses and economic importance, 1st edn, Agricultural Issues and Policies, 1–38. http://hdl.handle.net/11449/174692. Accessed 01 Jul 2021

  114. Souza AP, Leite DCC, Pattathil S et al (2012) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579. https://doi.org/10.1007/s12155-012-9268-1

    Article  CAS  Google Scholar 

  115. Braga CMP, Delabona P da S, Lima DJ da S et al (2014) Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis. Bioresour Technol 170:316–324. https://doi.org/10.1016/j.biortech.2014.07.115

    Article  CAS  PubMed  Google Scholar 

  116. Gottschalk LMF, Oliveira RA, Bon EP da S (2010) Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 51:72–78. https://doi.org/10.1016/j.bej.2010.05.003

    Article  CAS  Google Scholar 

  117. Velmurugan R, Muthukumar K (2012) Sono-assisted enzymatic saccharification of sugarcane bagasse for bioethanol production. Biochem Eng J 63:1–9. https://doi.org/10.1016/j.bej.2012.01.001

    Article  CAS  Google Scholar 

  118. Ofosu-Appiah C, Zakpaa HD, Mak-Mensah E et al (2016) Evaluation of ethanol production from pito mash using Zymomonas mobilis and Saccharomyces cerevisiae. Afr J Biotechnol 15:1613–1620. https://doi.org/10.5897/AJB2015.15042

    Article  CAS  Google Scholar 

  119. Gouvêa PF, Gerolamo LE, Bernardi AV et al (2019) Lytic polysaccharide monooxygenase from Aspergillus fumigatus can improve enzymatic cocktail activity during sugarcane bagasse hydrolysis. Protein Pept Lett 26:377–385. https://doi.org/10.2174/0929866526666190228163629

    Article  CAS  PubMed  Google Scholar 

  120. Geddes CC, Mullinnix MT, Nieves IU et al (2011) Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour Technol 102:2702–2711. https://doi.org/10.1016/j.biortech.2010.10.143

    Article  CAS  PubMed  Google Scholar 

  121. Bhatia L, Paliwal S (2011) Ethanol production potential of pachysolen tannophilus from sugarcane bagasse. Int J Biotechnol Bioeng Res 2:271–276

    Google Scholar 

  122. Bhatia L, Johri S (2016) Optimization of simultaneous saccharification and fermentation parameters for sustainable ethanol production from sugarcane bagasse by Pachysolen tannophilus MTCC 1077. Sugar Tech 18:457–467. https://doi.org/10.1007/s12355-015-0418-6

    Article  CAS  Google Scholar 

  123. Nouri H, Azin M, Mousavi ML (2017) Xylan-hydrolyzing thermotolerant Candida tropicalis HNMA-1 for bioethanol production from sugarcane bagasse hydrolysate. Ann Microbiol 67:633–641. https://doi.org/10.1007/s13213-017-1292-0

    Article  CAS  Google Scholar 

  124. Raj K, Krishnan C (2020) Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis. Renew Energy 153:392–403. https://doi.org/10.1016/j.renene.2020.02.042

    Article  CAS  Google Scholar 

  125. Antunes FAF, Chandel AK, Milessi TSS et al (2014) Bioethanol production from sugarcane bagasse by a novel brazilian pentose fermenting yeast Scheffersomyces shehatae UFMG-HM 52.2: Evaluation of Fermentation Medium. Int J Chem Eng. https://doi.org/10.1155/2014/180681

  126. Buaban B, Inoue H, Yano S et al (2010) Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J Biosci Bioeng 110:18–25. https://doi.org/10.1016/j.jbiosc.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  127. Santosh I, Ashtavinayak P, Amol D, Sanjay P (2017) Enhanced bioethanol production from different sugarcane bagasse cultivars using co-culture of Saccharomyces cerevisiae and Scheffersomyces (Pichia) stipitis. J Environ Chem Eng 5:2861–2868. https://doi.org/10.1016/j.jece.2017.05.045

    Article  CAS  Google Scholar 

  128. Wirawan F, Cheng CL, Lo YC et al (2020) Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process. Appl Energy 266:114871. https://doi.org/10.1016/j.apenergy.2020.114871

    Article  CAS  Google Scholar 

  129. Souza CJA, Costa DA, Rodrigues MQRB et al (2012) The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. Bioresour Technol 109:63–69. https://doi.org/10.1016/j.biortech.2012.01.024

    Article  CAS  PubMed  Google Scholar 

  130. Eshore S, Mondal C, Das A (2017) Production of biogas from treated sugarcane bagasse. Int J Sci Eng Technol 6:224–227. https://doi.org/10.5958/2277-1581.2017.00025.0

    Article  CAS  Google Scholar 

  131. Martinez-Hernandez E, Amezcua-Allieri MA, Sadhukhan J et al (2017) Sugarcane bagasse valorization strategies for bioethanol and energy production. Sugarcane Technol Res IntechOpen. https://doi.org/10.5772/intechopen.72237

    Article  Google Scholar 

  132. Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues I: Sugarcane bagasse. Bioresour Technol 74:69–80. https://doi.org/10.1016/S0960-8524(99)00142-X

    Article  CAS  Google Scholar 

  133. Bhadha J, Xu N, Khatiwada R, et al (2020) Bagasse: a potential organic soil amendment used. Sugarcane Prod 5:5. https://doi.org/10.32473/edis-ss690-2020

  134. Bidai TDT, Lelei JJ, Ouma JP (2020) Effect of sugarcane bagasse ash and manure amendments on selected soil properties in Western Kenya. Afr J Agric Res 16:1554–1561. https://doi.org/10.5897/AJAR2020.15194

    Article  Google Scholar 

  135. Berndtsson JC (2010) Green roof performance towards management of runoff water quantity and quality. Ecol Eng 36:351–360. https://doi.org/10.1016/j.ecoleng.2009.12.014

    Article  Google Scholar 

  136. Vijayaraghavan K, Raja FD (2014) Design and development of green roof substrate to improve runoff water quality: Plant growth experiments and adsorption. Water Res 63:94–101. https://doi.org/10.1016/j.watres.2014.06.012

    Article  CAS  PubMed  Google Scholar 

  137. Almeida MA, Colombo R (2018) BR102018072059-7. São Paulo, Brasil: Processo para fabricação de substratos para telhados verdes elaborados com bagaço de cana-de-açúcar e fibra de coco verde

  138. Dee BM, Haynes RJ, Graham MH (2003) Changes in soil acidity and the size and activity of the microbial biomass in response to the addition of sugar mill wastes. Biol Fertil Soils 37:47–54. https://doi.org/10.1007/s00374-002-0562-5

    Article  CAS  Google Scholar 

  139. Chindaprasirt P, Cao T (2015) The properties and durability of high-pozzolanic industrial by-products content concrete masonry blocks. Eco-Efficient Masonry Bricks Blocks 8:191–214. https://doi.org/10.1016/B978-1-78242-305-8.00008-5

    Article  Google Scholar 

  140. Sardar S, Ilyas SU, Malik SR, Javaid K (2012) Compost fertilizer production from sugar press mud (spm). Int J Chem Environ Eng 3:39–43

    Google Scholar 

  141. Shankaraiah C, Murthy K (2005) Effect of enriched pressmud cake on growth, yield and quality of sugarcane. Sugar Tech 7:1–4. https://doi.org/10.1007/BF02942519

    Article  Google Scholar 

  142. Talha Z, Ding W, Mehryar E, et al (2016) Alkaline pretreatment of sugarcane bagasse and filter mud codigested to improve biomethane production. BioMed Res Int 1–10.https://doi.org/10.1155/2016/8650597

  143. Silva MAS, Griebeler NP, Borges LC (2007) Use of stillage and its impact on soil properties and groundwater. Rev Bras Eng Agric Ambient 11:108–114. https://doi.org/10.1590/S1415-43662007000100014

    Article  Google Scholar 

  144. Parsaee M, Kiani Deh Kiani M, Karimi K (2019) A review of biogas production from sugarcane vinasse. Biomass Bioenergy 122:117–125. https://doi.org/10.1016/j.biombioe.2019.01.034

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil, financing code 001.

Author information

Authors and Affiliations

Authors

Contributions

Milla Araújo de Almeida: methodology, validation, formal analysis, investigation, data curation, writing (original draft), visualization; Renata Colombo: conceptualization, methodology, formal analysis, resources, data curation, writing (review and editing), supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Renata Colombo.

Ethics declarations

Conflict of Interest

The authors declare competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, M.A., Colombo, R. Production Chain of First-Generation Sugarcane Bioethanol: Characterization and Value-Added Application of Wastes. Bioenerg. Res. 16, 924–939 (2023). https://doi.org/10.1007/s12155-021-10301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10301-4

Keywords

Navigation