Skip to main content
Log in

Enzymatic Production of Xylooligosaccharides from Alkali-Solubilized Arabinoxylan from Sugarcane Straw and Coffee Husk

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis of lignocellulosic biomass has opened new perspectives for the production of biofuels and functional food ingredients, such as prebiotic xylooligosaccharides (XOS). This study aimed to improve the arabinoxylan extraction process from sugarcane straw (SS) and coffee husk (CH) to produce short-chain XOS by enzymatic hydrolysis using ideal enzyme mixture formulations. The improvement of arabinoxylan extraction process provided the highest extraction yield of about 40.35% and arabinoxylan extraction efficiency around 82.32% with insignificant lignin content values. In a second step, a central composite rotatable design was used to develop an enzyme mixture for XOS production from SS and CH arabinoxylan. Three commercial enzymes were tested, endoxylanase (GH11), α-l-arabinofuranosidase (GH51), and feruloyl esterase (CE1). An efficient enzyme mixture was developed, affording high XOS concentrations from SS arabinoxylan around 10.23 g L−1 and CH arabinoxylan 8.45 g L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Szczerbowski D, Pitarelo AP, Zandoná Filho A, Ramos LP (2014) Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr Polym 114:95–101. https://doi.org/10.1016/j.carbpol.2014.07.052

    Article  CAS  PubMed  Google Scholar 

  2. Agrupis SC, Maekawa E (1999) Industrial utilization of tobacco stalks (1) preliminary evaluation for biomass resources. Holzf. 53:29–32. https://doi.org/10.1515/HF.1999.005

    Article  CAS  Google Scholar 

  3. Jayapal N, Samanta AK, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT (2013) Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Ind Crop Prod 42:14–24. https://doi.org/10.1016/j.indcrop.2012.05.019

    Article  CAS  Google Scholar 

  4. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291. https://doi.org/10.1007/s10295-003-0049-x

    Article  CAS  PubMed  Google Scholar 

  5. Achary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:2–16. https://doi.org/10.1111/j.1541-4337.2010.00135.x

    Article  CAS  Google Scholar 

  6. Vazquez MJ, Alonso JL, Domınguez H, Parajo JC (2000) Xylooligosaccharides: manufacture and applications. Trends Food Sci Technol 11:387–393. https://doi.org/10.1016/S0924-2244(01)00031-0

    Article  CAS  Google Scholar 

  7. Van Loo J, Cummings J, Delzenne N et al (1999) Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). B J Nutri 81:121–132. https://doi.org/10.1017/S0007114599000252

    Article  Google Scholar 

  8. Roberfroid MB (2000) Prebiotics and probiotics: are they functional foods. Am J Clin Nutr 71:1682S–1687S. https://doi.org/10.1093/ajcn/71.6.1682S

    Article  CAS  PubMed  Google Scholar 

  9. Parajó JC, Garrote G, Cruz JM, Dominguez H (2004) Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci Technol 15:115–120. https://doi.org/10.1016/j.tifs.2003.09.009

    Article  CAS  Google Scholar 

  10. Qing Q, Li H, Kumar R, Wyman C E (2013) Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment In: Wyman C E (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, edn Wiley, New York, pp 391-415. https://doi.org/10.1002/9780470975831.ch19

  11. Alonso JL, Domínguez H, Garrote G, Parajó JC, Vázquez MJ (2003) Xylooligosaccharides: properties and production technologies. Electron J Environ Agric Food Chem 2:230–232

    Google Scholar 

  12. Akpinar O, Ak O, Kavas A, Bakir U, Yilmaz L (2007) Enzymatic production of xylooligosaccharides from cotton stalks. J Agric Food Chem 55:5544–5551. https://doi.org/10.1021/jf063580d

    Article  CAS  PubMed  Google Scholar 

  13. Goldbeck R, Gonçalves TA, Damásio AR et al (2016) Effect of hemicellulolytic enzymes to improve sugarcane bagasse saccharification and xylooligosaccharides production. J Mol Cat B: Enzymatic 131:36–46. https://doi.org/10.1016/j.molcatb.2016.05.013

    Article  CAS  Google Scholar 

  14. Goldbeck R, Damásio AR, Gonçalves TA et al (2014) Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications. Appl Microbiol Biotechnol 98:8513–8525. https://doi.org/10.1007/s00253-014-5946-6

    Article  CAS  PubMed  Google Scholar 

  15. Wong KK, Maringer U (1999) Substrate hydrolysis by combinations of Trichoderma xylanases. World J Microbiol Biotech 15:23–26

    Article  Google Scholar 

  16. Ávila PF, Cairo JPLF, Damasio A, Forte MB, Goldbeck R (2020) Xylooligosaccharides production from a sugarcane biomass mixture: effects of commercial enzyme combinations on bagasse/straw hydrolysis pretreated using different strategies. Food Res Int 128:108702. https://doi.org/10.1016/j.foodres.2019.108702

    Article  CAS  PubMed  Google Scholar 

  17. de Figueiredo FC, Carvalho AFA, Brienzo M, Campioni TS, de Oliva-Neto P (2017) Chemical input reduction in the arabinoxylan and lignocellulose alkaline extraction and xylooligosaccharides production. Bioresour Technol 228:164–170. https://doi.org/10.1016/j.biortech.2016.12.097

    Article  CAS  PubMed  Google Scholar 

  18. Association of Official Analytical Chemists (1995), Arlington

  19. Ávila PF, Forte MB, Goldbeck R (2018) Evaluation of the chemical composition of a mixture of sugarcane bagasse and straw after different pretreatments and their effects on commercial enzyme combinations for the production of fermentable sugars. Biomass Bioenergy 116:180–188. https://doi.org/10.1016/j.biombioe.2018.06.015

    Article  CAS  Google Scholar 

  20. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Lab Anal Proc 1617:1–16

    Google Scholar 

  21. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005a) Determination of ash in biomass laboratory analytical procedure. National Renewable Energy Laboratory Analytical Procedure, Golden

    Google Scholar 

  22. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005b) Determination of extractives in biomass. Laboratory Analytical Procedure (LAP), 1617

  23. Zilliox C, Debeire P (1998) Hydrolysis of wheat straw by a thermostable endoxylanase: adsorption and kinetic studies. Enzym Microb Technol 22:58–63. https://doi.org/10.1016/S0141-0229(97)00105-1

    Article  CAS  Google Scholar 

  24. Wise LB, Murphy M, D’Addieco AA (1946) Method of determining holocellulose in wood. P Trad J 102:10505–10509. https://doi.org/10.1016/j.biortech.2011.08.085

    Article  CAS  Google Scholar 

  25. Akpinar O, Erdogan K, Bostanci S (2009) Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr Res 344:660–666. https://doi.org/10.1016/j.carres.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  26. Carvalho AFA, Oliva Neto P, Almeida PZ, Silva JB, Escaramboni B, Pastore GM (2015) Screening of xylanolytic Aspergillus fumigatus for prebiotic xylooligosaccharide production using bagasse. Food Technol Biotechnol 53:428. https://doi.org/10.17113/ftb.53.04.15.4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1951):265–275

    Article  CAS  Google Scholar 

  28. da Silva ASA, Lee SH, Endo T, Bon EP (2011) Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]). Bioresour Technol 102:10505–10509

    Article  Google Scholar 

  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  30. Koseki T, Mimasaka N, Hashizume K, Shiono Y, Murayama T (2007) Stimulatory effect of ferulic acid on the production of extracellular xylanolytic enzymes by Aspergillus kawachii. Biosci Biotech Biochem 71:0706080452. https://doi.org/10.1271/bbb.70101

    Article  CAS  Google Scholar 

  31. Box GE, Hunter JS (1957) Multi-factor experimental designs for exploring response surfaces. Ann Math Stat 28:195–241

    Article  Google Scholar 

  32. Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46:199–204. https://doi.org/10.1016/j.bej.2009.05.012

    Article  CAS  Google Scholar 

  33. Gouveia ER, Nascimento RTD, Souto-Maior AM, Rocha GJDM (2009) Validation of methodology for the chemical characterization of sugar cane bagasse. Quím Nova 32:1500–1503. https://doi.org/10.1590/S0100-40422009000600026

    Article  CAS  Google Scholar 

  34. de Carvalho OF, Srinivas K, Helms GL, Isern NG, Cort JR, Gonçalves AR, Ahring BK (2018) Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresour Technol 257:172–180. https://doi.org/10.1016/j.biortech.2018.01.041

    Article  CAS  Google Scholar 

  35. Navya PN, Pushpa SM (2013) Production, statistical optimization and application of endoglucanase from Rhizopus stolonifer utilizing coffee husk. Bioprocess Biosyst Eng 36:1115–1123. https://doi.org/10.1007/s00449-012-0865-3

    Article  CAS  PubMed  Google Scholar 

  36. Bekalo SA, Reinhardt HW (2010) Fibers of coffee husk and hulls for the production of particleboard. Mater Struct 43:1049–1060. https://doi.org/10.1617/s11527-009-9565-0

    Article  CAS  Google Scholar 

  37. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–98. https://doi.org/10.1002/bit.20043

    Article  CAS  PubMed  Google Scholar 

  38. Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2004) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870. https://doi.org/10.1002/bit.21115

    Article  CAS  Google Scholar 

  39. Martins M, Ávila PF, de Andrade CCP, Goldbeck R (2020) Synergic recombinant enzyme association to optimize xylo-oligosacchride production. Biocat and Agric Biotechnol. https://doi.org/10.1016/j.bcab.2020.101747

  40. Brenelli LB (2013) Desenvolvimento de estratégias para produção biotecnológica de ácido ferúlico e xilooligossacarídeos a partir do bagaço de cana-de-açúcar. Universidade Estadual de Campinas, Campinas

    Google Scholar 

  41. Jain I, Kumar V, Satyanarayana T (2014) Applicability of recombinant β-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides. Bioresour Technol 170:462–469. https://doi.org/10.1016/j.biortech.2014.07.113

    Article  CAS  PubMed  Google Scholar 

  42. Surek E, Buyukkileci AO (2017) Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydr Polym 174:565. https://doi.org/10.1016/j.carbpol.2017.06.109

    Article  CAS  PubMed  Google Scholar 

  43. Brienzo M, Carvalho W, Milagres AM (2010) Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus. Appl Biochem Biotechnol 162:1195–1205. https://doi.org/10.1007/s12010-009-8892-5

    Article  CAS  PubMed  Google Scholar 

  44. Samanta AK, Jayapal N, Kolte AP, Senani S, Sridhar M, Suresh KP, Sampath KT (2012) Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour Technol 112:199–205. https://doi.org/10.1016/j.biortech.2012.02.036

    Article  CAS  PubMed  Google Scholar 

  45. Rodrigues MI, Iemma AF (2014) Experimental design and process optimization. CRC Press, New York

    Book  Google Scholar 

  46. Samanta AK, Jayapal N, Jayaram C, Roy S, Kolte AP, Senani S, Sridhar M (2015) Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact Carbohydr Diet Fibre 5:62–71. https://doi.org/10.1016/j.bcdf.2014.12.003

    Article  CAS  Google Scholar 

  47. Manisseri C, Gudipati M (2010) Bioactive xylo-oligosaccharides from wheat bran soluble polysaccharides. LWT-Food Sci Tech 43:421–430. https://doi.org/10.1016/j.lwt.2009.09.004

    Article  CAS  Google Scholar 

  48. Reddy SS, Krishnan C (2016) Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function. LWT-Food Sci Technol 65:237–245. https://doi.org/10.1016/j.lwt.2015.08.013

    Article  CAS  Google Scholar 

  49. Fujikawa S, Okazaki M, Matsumoto N (1991) Effect of xylooligosaccharide on growth of intestinal bacteria and putrefaction products. J Japanese Soc Nut Food Sci (Japan) 119:293–299. https://doi.org/10.1016/j.biortech.2012.05.062

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the São Paulo State Research Foundation for the financial support (FAPESP, grants nos. 2015/20630-4, 2015/50612-8, 2017/24503-2, and 2019/08542-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana Goldbeck.

Ethics declarations

Conflict of Interest

The authors state that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila, P.F., Martins, M. & Goldbeck, R. Enzymatic Production of Xylooligosaccharides from Alkali-Solubilized Arabinoxylan from Sugarcane Straw and Coffee Husk. Bioenerg. Res. 14, 739–751 (2021). https://doi.org/10.1007/s12155-020-10188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10188-7

Keywords

Navigation