Skip to main content

Advertisement

Log in

Hyperspectral Reflectance Data and Agronomic Traits Can Predict Biomass Yield in Winter Rye Hybrids

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Winter rye (Secale cereale L.), a potential alternative biogas substrate, is traditionally bred for grain yield. Thus, our objective was to evaluate the possibility to predict dry matter yield combining vegetation indices derived from visible to NIR spectral data as a proxy for agronomic traits. A total of 404 elite rye hybrids were tested for grain yield, and a subset of this comprising 274 hybrids were also tested for dry matter yield over 2 years and at 4 locations in Germany bringing the total number of environments to 8. Spectral data were collected around solar noontime on mostly clear sky by an unmanned aerial vehicle (UAV) on two dates and measured in the wavelength range between 410 and 993 nm. Observed variation among tested hybrids ranged between 3.64–10.53 Mg ha–1 for grain yield and 8.44–14.66 Mg ha–1 for dry matter yield across different sites. The 23 vegetation indices and the agronomic traits, such as plant height, grain yield, and dry matter yield, showed mostly moderate to high heritability estimates (h2 > 0.50), and their genetic variances were significantly (P < 0.001) different from zero. Plant height was more informative than grain yield for indirect selection of high dry matter yield. An index combining hyperspectral and agronomic data developed by a multiple regression procedure showed a cross-validated prediction ability of 0.75, representing an improvement of about 6% to a model incorporating only agronomic traits. During earlier selection stages, the developed index could be a suitable tool for the cost-effective selection of superior candidates for biomass trials based on grain yield trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Söderberg C, Eckerberg K (2013) Rising policy conflicts in Europe over bioenergy and forestry. Forest Policy Econ 33:112–119. https://doi.org/10.1016/j.forpol.2012.09.015

    Article  Google Scholar 

  2. European Union (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union: 16–62

  3. European Biomass Association (AEBIOM) (2017) Statistical Report – European Bioenergy Outlook. http://www.aebiom.org/wp-content/uploads/2017/10/FINAL-AEBIOM-2017-STATISTICAL-REPORT.pdf

  4. Fachagentur Nachwachsende Rohstoffe e.V. (2019) Basisdaten Bioenergie Deutschland 2018. http://www.fnr.de/fileadmin/allgemein/pdf/broschueren/Basisdaten_Bioenergie_2018_k.pdf. Accessed 12 Apr 2019

  5. Fachagentur Nachwachsende Rohstoffe e.V. (2019) Anbaufläche nachwachsender Rohstoffe in Deutschland nach Kulturarten 2016-2018. https://www.fnr.de/fileadmin/news/fnr/2019/PM_2019-09_Anbauzahlen_II.jpg. Accessed 12 Apr 2019

  6. European Union (2018) Federal Republic of Germany. Progress report under Article 22 of Directive 2009/28/EC on the promotion of the use of energy from renewable sources. Accessed 29 Oct 2018

  7. European Union (2010) Communication from the commission on the practical implementation of the EU biofuels and bioliquids sustainability scheme and on counting rules for biofuels (2010/C 160/02). Off J Eur Union

  8. FAO (2018) FAOSTAT database. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC. Accessed 27 Aug 2018

  9. Hübner M, Oechsner H, Koch S et al (2011) Impact of genotype, harvest time and chemical composition on the methane yield of winter rye for biogas production. Biomass Bioenergy 35(10):4316–4323. https://doi.org/10.1016/j.biombioe.2011.07.021

    Article  CAS  Google Scholar 

  10. Igos E, Golkowska K, Koster D et al (2016) Using rye as cover crop for bioenergy production: an environmental and economic assessment. Biomass Bioenergy 95:116–123. https://doi.org/10.1016/j.biombioe.2016.09.023

    Article  Google Scholar 

  11. Miedaner T, Hübner M, Koch S et al (2010) Biomass yield of self-incompatible germplasm resources and their testcrosses in winter rye. Plant Breed 129(4):369–375. https://doi.org/10.1111/j.1439-0523.2010.01777.x

    Article  Google Scholar 

  12. Roux SR, Wortmann H, Schlathölter M (2010) Rye (Secale cereale L.) for biogas production-breeding capability. J Kult urpfl 62(5):173–182

  13. Geiger HH, Miedaner T (2009) Rye breeding. In: Carena MJ (ed), Cereals (Handbook of Plant Breeding), Springer, 1st edition:157–181

  14. Geiger HH, Miedaner T (1999) Hybrid rye and heterosis.In: Coors JG, Pandey S (eds). Genetics and Exploitation of Heterosis in Crops. Crop Science Society. America, Madison: 439–450

  15. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (2017) Besondere Ernte- und Qualitätsermittlung (BEE). Reihe: Daten-Analysen: 39

  16. Bundessortenamt (2018) Beschreibende Sortenliste Getreide, Mais, Öl-und Faserpflanzen, Leguminosen, Rüben, Zwischenfrüchte. Hannover, Bundessortenamt

  17. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4. ed. Longman, Essex

    Google Scholar 

  18. Haffke S, Kusterer B, Fromme FJ, Roux S, Hackauf B, Miedaner T (2014) Analysis of covariation of grain yield and dry matter yield for breeding dual use hybrid rye. BioEnergy Research 7(1):424–429. https://doi.org/10.1007/s12155-013-9383-7

    Article  Google Scholar 

  19. Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19(1):52–61. https://doi.org/10.1016/j.tplants.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  20. Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12(10):433–436. https://doi.org/10.1016/j.tplants.2007.08.006

    Article  CAS  PubMed  Google Scholar 

  21. Krause MR, González-Pérez L, Crossa J et al (2019) Hyperspectral reflectance-derived relationship matrices for genomic prediction of grain yield in wheat. G3: Genes, Genomes. Genetics 9(4):1231–1247. https://doi.org/10.1101/389825

    Article  CAS  Google Scholar 

  22. Haghighattalab A, González Pérez L, Mondal S, Singh D, Schinstock D, Rutkoski J, Ortiz-Monasterio I, Singh RP, Goodin D, Poland J (2016) Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 12(1):35. https://doi.org/10.1186/s13007-016-0134-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sensors 2017(1):1–17. https://doi.org/10.1155/2017/1353691

    Article  CAS  Google Scholar 

  24. Ehlert D, Horn H-J, Adamek R (2008) Measuring crop biomass density by laser triangulation. Comput Electron Agric 61(2):117–125. https://doi.org/10.1016/j.compag.2007.09.013

    Article  Google Scholar 

  25. Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J, Reynolds M, Singh R (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3: Genes, Genomes, Genetics 6(9):2799–2808. https://doi.org/10.1534/g3.116.032888

    Article  Google Scholar 

  26. Montesinos-López OA, Montesinos-López A, Crossa J, de Los Campos G, Alvarado G, Suchismita M, Rutkoski J, González-Pérez L, Burgueño J (2017) Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data. Plant Methods 13(1):4. https://doi.org/10.1186/s13007-016-0154-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Verhoeven KJ, Jannink JL, McIntyre LM (2006) Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity 96(2):139–149

    Article  CAS  Google Scholar 

  28. Patterson HD, Williams ER (1976) A new class of resolvable incomplete block designs. Biometrika 63(1):83–92

    Article  Google Scholar 

  29. Meier U (1997) Growth stages of mono- and dicotyledonous plants. Blackwell Wissenschafts-Verlag, Berlin

    Google Scholar 

  30. Adão T, Hruška J, Pádua L et al (2017) Hyperspectral imaging. A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens 9(11):1110

    Article  Google Scholar 

  31. Woebbecke DM, Meyer GE, von Bargen K et al (1995) Color indices for weed identification under various soil, residue, and lighting conditions. Trans ASAE 38(1):259–269

    Article  Google Scholar 

  32. Gitelson AA, Kaufman YJ, Stark R et al (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ 80(1):76–87

    Article  Google Scholar 

  33. Gitelson AA, Viña A, Arkebauer TJ et al (2003) Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys Res Lett 30(5). https://doi.org/10.1029/2002GL016450

  34. Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143(1):105–117

    Article  CAS  Google Scholar 

  35. Louhaichi M, Borman MM, Johnson DE (2001) Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International 16(1):65–70

    Article  Google Scholar 

  36. Peñuelas J, Filella I, Gamon JA (1995) Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol 131(3):291–296

    Article  Google Scholar 

  37. Blackburn GA (1998) Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. Int J Remote Sens 19(4):657–675

    Article  Google Scholar 

  38. Xue L, Cao W, Luo W et al (2004) Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agron J 96(1):135–142

    Article  Google Scholar 

  39. Zhao D, Reddy KR, Kakani VG et al (2003) Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil 257(1):205–218

    Article  CAS  Google Scholar 

  40. Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58(3):289–298

    Article  Google Scholar 

  41. Rouse Jr J, Haas RH, Schell JA et al. Monitoring vegetation systems in the Great Plains with ERTS. In: Third ERTS Symposium, NASA SP-351, pp 309–317

  42. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  43. Serrano L, Filella I, Peñuelas J (2000) Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Sci 40(3):723–731. https://doi.org/10.2135/cropsci2000.403723x

    Article  Google Scholar 

  44. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148(1-2):4–14

    Article  CAS  Google Scholar 

  45. Broge N, Leblanc E (2001) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ 76(2):156–172. https://doi.org/10.1016/S0034-4257(00)00197-8

    Article  Google Scholar 

  46. Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81(2-3):337–354. https://doi.org/10.1016/S0034-4257(02)00010-X

    Article  Google Scholar 

  47. Babar MA, Reynolds MP, van Ginkel M et al (2006) Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci 46(3):1046–1057

    Article  Google Scholar 

  48. Prasad B, Carver BF, Stone ML et al (2007) Potential use of spectral reflectance indices as a selection tool for grain yield in winter wheat under Great Plains conditions. Crop Sci 47(4):1426–1440. https://doi.org/10.2135/cropsci2005.0211

    Article  Google Scholar 

  49. Haboudane D, Miller JR, Pattey E et al (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ 90(3):337–352. https://doi.org/10.1016/j.rse.2003.12.013

    Article  Google Scholar 

  50. Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143(3):286–292

    Article  CAS  Google Scholar 

  51. Gao L, Smith RT (2015) Optical hyperspectral imaging in microscopy and spectroscopy–a review of data acquisition. J Biophotonics 8(6):441–456

    Article  Google Scholar 

  52. Piepho HP, Büchse A, Richter C (2004) A mixed modelling approach for randomized experiments with repeated measures. J Agron Crop Sci 190(4):230–247

    Article  Google Scholar 

  53. Piepho HP, Büchse A, Emrich K (2003) A hitchhiker's guide to mixed models for randomized experiments. J Agron Crop Sci 189(5):310–322

    Article  Google Scholar 

  54. Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics:1171–1177

  55. Bernal-Vasquez A-M, Utz H-F, Piepho H-P (2016) Outlier detection methods for generalized lattices: a case study on the transition from ANOVA to REML. Theor Appl Genet 129(4):787–804. https://doi.org/10.1007/s00122-016-2666-6

    Article  PubMed  Google Scholar 

  56. Piepho H-P, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177(3):1881–1888. https://doi.org/10.1534/genetics.107.074229

    Article  PubMed  PubMed Central  Google Scholar 

  57. R Core Team (2018) R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  58. Butler DG, Cullis BR, Gilmour AR et al. (2009) ASReml-R reference manual. The State of Queensland, Department of Primary Industries and Fisheries, Brisbane

  59. Cooper M, DeLacy IH, Basford KE et al. (1996) Relationships among analytical methods used to analyse genotypic adaptation in multi-environment trials. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. IRRI, pp 193–224

  60. Laidig F, Piepho H-P, Drobek T, Meyer U (2014) Genetic and non-genetic long-term trends of 12 different crops in German official variety performance trials and on-farm yield trends. Theor Appl Genet 127(12):2599–2617

    Article  Google Scholar 

  61. Damesa TM, Möhring J, Worku M et al (2017) One step at a time: stage-wise analysis of a series of experiments. Agron J 109(3):845–856. https://doi.org/10.2134/agronj2016.07.0395

    Article  Google Scholar 

  62. Akaike H (1969) Fitting autoregressive models for prediction. Ann Inst Stat Math 21(1):243–247

    Article  Google Scholar 

  63. Hebbali A (2018) Olsrr: tools for building Ols regression models. R package version 0.5 1

  64. Ripley B, Venables B, Bates DM et al. (2013) Package ‘mass’. Cran R

  65. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: prediction, inference and data mining. Springer-Verlag, New York

    Book  Google Scholar 

  66. Gianola D, Schön C-C (2016) Cross-validation without doing cross-validation in genome-enabled prediction. G3: Genes, Genomes, Genetics 6(10):3107–3128

    Article  Google Scholar 

  67. Rincent R, Charpentier J-P, Faivre-Rampant P et al (2018) Phenomic selection is a low-cost and high-throughput method based on indirect predictions: proof of concept on wheat and poplar. G3: Genes, Genomes, Genetics 8(12):3961–3972

    CAS  Google Scholar 

  68. Hothorn T, Bretz F, Hothorn MT (2009) The multcomp package

  69. Gowda M, Hahn V, Reif JC et al (2011) Potential for simultaneous improvement of grain and biomass yield in Central European winter triticale germplasm. Field Crop Res 121(1):153–157. https://doi.org/10.1016/j.fcr.2010.12.003

    Article  Google Scholar 

  70. Peñuelas J, Filella I, Biel C et al (1993) The reflectance at the 950–970 nm region as an indicator of plant water status. Int J Remote Sens 14(10):1887–1905

    Article  Google Scholar 

  71. Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 28(6):476–490

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the excellent support of the technical staff at each experimental station. We are particularly grateful to Hans-Otto Wegener, Jörn-Claus Gudehus, Karsten Sell, KWS LOCHOW GmbH, Bergen, Germany, for seed production and conducting field trials. The authors also wish to thank Prof. Dr. Utz for his assistance with the statistical analysis. We are also grateful for helpful comments by three anonymous referees.

Funding

This study was funded by the German Federal Ministry of Food and Agriculture (BMEL) through the German Agency for Renewable Resources (FNR), grant number FKZ 22019716 to TM and the ZUCHTWERT Project (grant FKZ 0103010) for PT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Miedaner.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2.69 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galán, R.J., Bernal-Vasquez, AM., Jebsen, C. et al. Hyperspectral Reflectance Data and Agronomic Traits Can Predict Biomass Yield in Winter Rye Hybrids. Bioenerg. Res. 13, 168–182 (2020). https://doi.org/10.1007/s12155-019-10080-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-10080-z

Keywords

Navigation