Skip to main content

Advertisement

Log in

Analysis of Covariation of Grain Yield and Dry Matter Yield for Breeding Dual Use Hybrid Rye

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Winter rye (Secale cereale L.) is becoming increasingly important as substrate for biogas production in Central Europe. Dry matter yield has evolved as a breeding goal comparably important to the traditional grain yield. We analyzed the covariation between both traits and tested other agronomic traits for their correlation to dry matter yield that could be used for prediction of biomass yield. A set of 258 experimental hybrids were tested for dry matter yield harvested at late milk stage and grain yield harvested at full ripening at three to four locations in Germany in 2011 and 2012. We observed a wide range of dry matter yield (10–24 Mg ha−1) and grain yield (6–15 Mg ha−1) among testcross progenies. Genetic variances were significantly (P < 0.01) different from zero for all traits. High entry-mean heritabilities (0.92–0.94) were found for plant height measurements and moderate heritabilities for grain and dry matter yield (0.52 and 0.49, respectively). Relative efficiencies for selection of dry matter yield estimated by second (EC 51–55) and third (EC 73) measurements of plant height were 1.24 and 0.98 respectively, compared to 0.52 for grain yield. Indirect selection for high dry matter yield using late plant height measurements should be successful. Using grain yield for indirect selection was less effective. The observed broad genetic variation for biomass yield in elite hybrid rye gives good prospects for the use as a resource of renewable energy. Plant height is a good predictor of dry matter yield but should be selected together with improved lodging resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DMY:

Dry matter yield

EG:

Early growth

GY:

Grain yield

HT:

Heading time

PH 1:

Plant height measured in EC 32

PH 2:

Plant height measured in EC51-55

PH 3:

Plant height measured before harvest

SPM:

Spikes per square meter

References

  1. (2013) FAOSTAT Database. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed 7 Oct 2013

  2. (2013) Fachagentur Nachwachsende Rohstoffe e.V. http://mediathek.fnr.de/grafiken/daten-und-fakten/bioenergie/biogas/massebezogener-substrateinsatz-nachwachsender-rohstoffe-in-­biogasanlagen.html. Accessed 7 Oct 2013

  3. (2002) ECOPORT Database, Secale cereale. http://ecoport.org/ep?Plant=1929&entityType=PL****&entityDisplayCategory=full. Accessed 7 Oct 2013

  4. Muller A (2008) Sustainable agriculture and the production of biomass for energy use. Clim Chang 94:319–331. doi:10.1007/s10584-008-9501-2

    Article  Google Scholar 

  5. Jørgensen JR, Deleuran LC, Wollenweber B (2007) Prospects of whole grain crops of wheat, rye and triticale under different fertilizer regimes for energy production. Biomass Bioenergy 31:308–317. doi:10.1016/j.biombioe.2007.01.001

    Article  Google Scholar 

  6. Besondere Ernte- und Qualitätsermittlung (BEE) (2012). Reihe: Daten-Analysen. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Bonn. http://berichte.bmelv-statistik.de/EQB-1002000-2012.pdf (p. 38)

  7. Bundessortenamt (2012) Beschreibende Sortenliste Getreide, Mais, Öl- und Faserpflanzen, Leguminosen, Rüben, Zwischenfrüchte. http://www.bundessortenamt.de/internet30/index.php?id=23&L=0. Accessed 7 Oct 2013

  8. Hübner M, Oechsner H, Koch S et al (2011) Impact of genotype, harvest time and chemical composition on the methane yield of winter rye for biogas production. Biomass Bioenergy 35:4316–4323. doi:10.1016/j.biombioe.2011.07.021

    Google Scholar 

  9. Miedaner T, Hübner M, Koch S et al (2010) Biomass yield of self-incompatible germplasm resources and their testcrosses in winter rye. Plant Breed 129:369–375. doi:10.1111/j.1439-0523.2010.01777.x

    Google Scholar 

  10. Roux SR, Wortmann H (2010) Züchterisches Potenzial von Roggen (Secale cereale L.) für die Biogaserzeugung. J Kult 62:173–182

    Google Scholar 

  11. Gowda M, Hahn V, Reif JC et al (2011) Potential for simultaneous improvement of grain and biomass yield in Central European winter triticale germplasm. Field Crop Res 121:153–157. doi:10.1016/j.fcr.2010.12.003

  12. Geiger HH, Miedaner T (2009) Rye breeding. In: Carena MJ (ed) Cereals. Springer, Heidelberg, pp 157–181

    Chapter  Google Scholar 

  13. Meier U (ed) (2001) Growth stages of mono-and dicotyledonous plants. BBCH Monograph. In: Federal Biological Research Centre for Agriculture and Forestry, Braunschweig. http://www.bba.de/veroeff/bbch/bbcheng.pdf

  14. Utz HF (2010) PLABSTAT: a computer program for statistical analysis of plant breeding experiments, version 3Bp. Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Germany

  15. Cochran WG, Cox GM (1957) Experimental design, 2nd edn. Wiley, New York

    Google Scholar 

  16. Fisher RA (1921) On the “probable error” of a coefficient of correlation deduced from a small sample. Metron 1:1–32

    Google Scholar 

  17. Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518–537

    Article  Google Scholar 

  18. Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Longman Scientific and Technical, New York

    Google Scholar 

  19. Harrer S, Utz HF (1990) Modellstudie zur Züchtung von Low-Input-Sorten am Beispiel des Maises. Arbeitstagung der “Arbeitsgemeinschaft der Saatzuchtleiter innerhalb der Vereinigung der österreichischer Pflanzenzüchter” Gumpenstein, Österreich, 20-22 November 1990. Pp. 9–19

  20. Miedaner T, Koch S, Seggl A et al (2012) Quantitative genetic parameters for selection of biomass yield in hybrid rye. Plant Breed 131:100–103. doi:10.1111/j.1439-0523.2011.01909.x

    Google Scholar 

  21. Grieder C, Dhillon BS, Schipprack W, Melchinger AE (2012) Breeding maize as biogas substrate in Central Europe: II. Quantitative-genetic parameters for inbred lines and correlations with testcross performance. Theor Appl Genet 124:981–988. doi:10.1007/s00122-011-1762-x

    Article  PubMed  Google Scholar 

  22. Strigens A, Grieder C, Haussmann BIG, Melchinger AE (2012) Genetic variation among inbred lines and testcrosses of maize for early growth parameters and their relationship to final dry matter yield. Crop Sci 52:1084–1092. doi:10.2135/cropsci2011.08.0426

    Article  Google Scholar 

  23. Boukerrou L, Rasmusson DC (1990) Breeding for high biomass yield in spring barley. Crop Sci 30:31–35

    Article  Google Scholar 

  24. Reimann-Philipp R (2010) Breeding perennial rye. In: Janick J (ed) Plant breeding reviews, vol. 13. Wiley, New York, pp 265–292

Download references

Acknowledgements

We highly appreciate the excellent technical support of the teams at the respective stations. This study was financially supported by the “Federal Ministry of Education and Research” (Grant no. 0315445C) and the company HYBRO Saatzucht GmbH & Co. KG, Germany. The responsibility of the content of this publication rests with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Miedaner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haffke, S., Kusterer, B., Fromme, F.J. et al. Analysis of Covariation of Grain Yield and Dry Matter Yield for Breeding Dual Use Hybrid Rye. Bioenerg. Res. 7, 424–429 (2014). https://doi.org/10.1007/s12155-013-9383-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9383-7

Keywords

Navigation