Skip to main content

Advertisement

Log in

Morpho-Physiological Responses of Alamo Switchgrass During Germination and Early Seedling Stage Under Salinity or Water Stress Conditions

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Switchgrass (Panicum virgatum L.) is a warm perennial grass with valuable characteristics as a biofuel crop. To avoid competition with food crops, biofuel crops will be likely relegated to less productive soils such as marginal lands. Consequently, the salinity and water scarcity problems that commonly affect marginal lands compromise biofuel crop germination, emergence, and seedling establishment. The aims of this study were to study the germination and seedling growth of switchgrass under salinity and water stress and to describe the morpho-anatomical responses of the roots and leaves in the seedlings to these stress conditions. The effect of salt and water stress was assessed using sodium chloride (NaCl) and polyethylene glycol (PEG) 8000 at the same water potentials of − 0.8, − 1.0, and − 1.2 MPa. Seeds were moist prechilled for 7 days at 5 °C and germinated at 30/15 °C (8 h light/16 h dark). NaCl treatments (− 0.8 and − 1.0 MPa) delayed germination rates but did not reduce the final germination percentage, whereas at a lower potential (− 1.2 MPa), the final germination percentage was diminished. The effects of PEG (− 1.0 and − 1.2 MPa) on the germination rate and final percentage were more detrimental than those induced by isosmotic concentrations of NaCl. PEG and NaCl reduced significantly the vigor index of − 0.8 to − 1.2 MPa. The morpho-anatomical changes such as the reduction in the root cross-sectional area and the thickening of the endodermis walls for both stress conditions and aerenchyma formation in the cortex under salinity could significantly contribute in the survival and tolerance during the early seedling stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ψ w :

Water potential (MPa)

AL:

Aerial part length

DAS:

Days after sowing

FGP:

Final germination percentage

GR:

Germination rate

RL:

Root length

t 50 :

Time to obtain 50% germination

VI:

Vigor index

References

  1. Duclos D, Ray D, Johnson D, Taylor A (2013) Investigating seed dormancy in switchgrass (Panicum virgatum L.): understanding the physiology and mechanisms of coat-imposed seed dormancy. Ind Crop Prod 45:377–387. https://doi.org/10.1016/j.indcrop.2013.01.005

    Article  CAS  Google Scholar 

  2. Huang S, Su X, Haselkorn R, Gornicki P (2003) Evolution of switchgrass (Panicum virgatum L.) based on sequences of the nuclear gene encoding plastid acetyl-CoA carboxylase. Plant Sci 164:43–49. https://doi.org/10.1016/S0168-9452(02)00327-8

    Article  CAS  Google Scholar 

  3. Stroup JA, Sanderson MA, Muir JP, McFarland M, Reed RL (2003) Comparison of growth and performance in upland and lowland switchgrass types to water and nitrogen stress. Bioresour Technol 86:65–72. https://doi.org/10.1016/S0960-8524(02)00102-5

    Article  PubMed  CAS  Google Scholar 

  4. Hashemi M, Sadeghpour A (2013) Establishment and production of switchgrass grown for combustion: A Review. Int J Plant Biol Res 1(1):1002

    Google Scholar 

  5. Almansouri M, Kiner J, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254. https://doi.org/10.1023/A:1010378409663

    Article  CAS  Google Scholar 

  6. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    Article  PubMed  CAS  Google Scholar 

  7. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

    Article  PubMed  CAS  Google Scholar 

  8. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  PubMed  CAS  Google Scholar 

  9. Llanes A, Andrade A, Masciarelli O, Alemano S, Luna V (2016) Drought and salinity alter endogenous hormonal profiles at the seed germination phase. Seed Sci Res 26:1–13. https://doi.org/10.1017/S0960258515000331

    Article  CAS  Google Scholar 

  10. Kramer P, Boyer J (1995) Water relations of plants and soils. Elsevier Academic, San Diego

    Google Scholar 

  11. Quinn LD, Straker KC, Guo J, Kim S, Thapa S, Kling G, Lee DK, Voigt TB (2015) Stress-tolerant feedstocks for sustainable bioenergy production on marginal land. Bioenergy Res 8:1081–1100. https://doi.org/10.1007/s12155-014-9557-y

    Article  CAS  Google Scholar 

  12. Aimar D, Calafat M, Andrade A, Carassay L, Abdala G, Molas M (2011) Drought tolerance and stress hormones: From model organisms to forage crops. Plants Environ 272. https://doi.org/10.5772/1958

  13. Liu Y, Zhang X, Miao J, Huang L, Frazier T, Zhao B (2014) Evaluation of salinity tolerance and genetic diversity of thirty-three switchgrass (Panicum virgatum) populations. Bioenergy Res 7:1329–1342. https://doi.org/10.1007/s12155-014-9466-0

    Article  CAS  Google Scholar 

  14. Sun G, Stewart CN, Xiao P, Zhang B (2012) MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One 7:e32017. https://doi.org/10.1371/journal.pone.0032017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu Y, Wang Q, Zhang Y, Cui J, Chen G, Xie B, Wu C, Liu H (2014) Synergistic and antagonistic effects of salinity and pH on germination in switchgrass (Panicum virgatum L.). PLoS One 9:e85282. https://doi.org/10.1371/journal.pone.0085282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. International Seed Testing Association ISTA (2012) International rules for seed testing. Seed Sci Technol 21:288

    Google Scholar 

  17. Kim J, Liu Y, Zhang X, Zhao B, Childs KL (2016) Analysis of salt-induced physiological and proline changes in 46 switchgrass (Panicum virgatum) lines indicates multiple response modes. Plant Physiol Biochem 105:203–212. https://doi.org/10.1016/j.plaphy.2016.04.020

    Article  PubMed  CAS  Google Scholar 

  18. Barney JN, Mann JJ, Kyser GB, Blumwald E, van Deynze A, DiTomaso JM (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci 177:724–732. https://doi.org/10.1016/j.plantsci.2009.09.003

    Article  CAS  Google Scholar 

  19. Liu Y, Zhang X, Tran H, Shan L, Kim J, Childs K, Ervin EH, Frazier T, Zhao B (2015) Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. Biotechnol Biofuels 8:1–18. https://doi.org/10.1186/s13068-015-0342-8

    Article  CAS  Google Scholar 

  20. Sosa L, Llanes A, Reinoso H et al (2005) Osmotic and specific ion effects on the germination of Prosopis strombulifera. Ann Bot 96:261–267. https://doi.org/10.1093/aob/mci173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Michel B (1983) Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol 72:66–70. https://doi.org/10.1104/pp.72.1.66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Farooq M, Basra SMA, Ahmad N, Hafeez K (2005) Thermal hardening: a new seed vigor enhancement tool in Rice. J Integr Plant Biol 47:187–193. https://doi.org/10.1111/j.1744-7909.2005.00031.x

    Article  Google Scholar 

  23. Khan MA, Ungar IA (1984) The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. Am J Bot 71:481. https://doi.org/10.2307/2443323

    Article  Google Scholar 

  24. Fina BL, Lupo M, Dri N, Lombarte M, Rigalli A (2016) Comparison of fluoride effects on germination and growth of Zea mays, Glycine max and Sorghum vulgare. J Sci Food Agric 96:3679–3687. https://doi.org/10.1002/jsfa.7551

    Article  PubMed  CAS  Google Scholar 

  25. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  26. Céccoli G, Ramos JC, Ortega LI, Acosta JM, Perreta MG (2011) Salinity induced anatomical and morphological changes in Chloris gayana Kunth roots. Biocell 35:9–17

    PubMed  Google Scholar 

  27. Ayala-Cordero G, Terrazas T, López-Mata L, Trejo C (2006) Morpho-anatomical changes and photosynthetic metabolism of Stenocereus beneckei seedlings under soil water deficit. J Exp Bot 57:3165–3174. https://doi.org/10.1093/jxb/erl078

    Article  PubMed  CAS  Google Scholar 

  28. Kim SB, Rayburn AL, Voigt T, Parrish A, Lee DK (2012) Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. Bioenergy Res 5:225–235. https://doi.org/10.1007/s12155-011-9145-3

    Article  Google Scholar 

  29. Carson MA, Bachle S, Morris AN (2016) Germination and growth of Panicum virgatum cultivars in a NaCl gradient. In: Khan MA et al (eds) Sabkha Ecosystem Volume V: The Americas, Tasks for vegetation science 48. Springer International Publishing, Basel, pp 287–297

    Chapter  Google Scholar 

  30. Al-Khateeb SA (2006) Effect of salinity and temperature on germination, growth and ion relations of Panicum turgidum Forssk. Bioresour Technol 97:292–298. https://doi.org/10.1016/j.biortech.2005.02.041

    Article  PubMed  CAS  Google Scholar 

  31. Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6. https://doi.org/10.1093/aobpla/plu047

  32. Hameed A, Rasheed A, Gul B, Khan MA (2014) Salinity inhibits seed germination of perennial halophytes Limonium stocksii and Suaeda fruticosa by reducing water uptake and ascorbate dependent antioxidant system. Environ Exp Bot 107:32–38. https://doi.org/10.1016/j.envexpbot.2014.04.005

    Article  CAS  Google Scholar 

  33. Luan Z, Xiao M, Zhou D et al (2014) Effects of salinity, temperature, and polyethylene glycol on the seed germination of sunflower (Helianthus annuus L.). Sci World J. https://doi.org/10.1155/2014/170418

  34. Alam M, Stuchbury T, Naylor R (2002) Effect of NaCl and PEG induced osmotic potentials on germination and early seedling growth of rice cultivars differing in salt tolerance. Pak J Biol Sci 5:1207–1210

    Article  Google Scholar 

  35. Murillo-Amador B, López-Aguilar R, Kaya C et al (2002) Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. J Agron Crop Sci 188:235–247. https://doi.org/10.1046/j.1439-037X.2002.00563.x

    Article  CAS  Google Scholar 

  36. Rahman M, Ungar I (1990) The effect of salinity on seed germination and seedling growth of Echinochloa crusgalli. Ohio J Sci 90:13–15

    CAS  Google Scholar 

  37. Kaya MD, Okçu G, Atak M, Çıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295. https://doi.org/10.1016/j.eja.2005.08.001

    Article  CAS  Google Scholar 

  38. Pandey M, Penna S (2017) Time course of physiological, biochemical, and gene expression changes under short-term salt stress in Brassica juncea L. Crop J 5:219–230. https://doi.org/10.1016/j.cj.2016.08.002

    Article  Google Scholar 

  39. Mokhberdoran F, Kalat Nabavi S, Haghighi Sadrabadi R (2009) Effect of temperature, iso-osmotic concentration of NaCl and PEG agents on germination and some seedling growth yield in rice (Oryza sativa L.). Asian J Plant Sci 8:409–416

    Article  CAS  Google Scholar 

  40. Wasson AP, Richards RA, Chatrath R, Misra SC, Prasad SVS, Rebetzke GJ, Kirkegaard JA, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498. https://doi.org/10.1093/jxb/ers111

    Article  PubMed  CAS  Google Scholar 

  41. Reinoso H, Sosa L, Ramírez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot 82:618–628. https://doi.org/10.1139/b04-040

    Article  Google Scholar 

  42. Hameed M, Ashraf M, Naz N, Al-Qurany F (2010) Anatomical adaptations of Cynodon dactylon (L.) Pers. from the salt range Pakistan, to salinity stress. I. Root and stem anatomy. Pak J Bot 42:279–289

    Google Scholar 

  43. Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X (2014) Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One 9:e112807. https://doi.org/10.1371/journal.pone.0112807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. van der Weele CM, Canny MJ, McCully ME (1996) Water in aerenchyma spaces in roots. A fast diffusion path for solutes. Plant Soil 184:131–141. https://doi.org/10.1007/BF00029283

    Article  Google Scholar 

  45. Naz N, Hameed M, Nawaz T et al (2013) Structural adaptations in the desert halophyte Aeluropus lagopoides (Linn.) Trin. ex Thw. under high salinity. J Biol Res 19:150–164

    Google Scholar 

  46. Gibbs J, Turner D, Armstrong W et al (1998) Response to oxygen deficiency in primary maize roots. I. Development of oxygen deficiency in the stele reduces radial solute transport to the xylem. Aust J Plant Physiol 25:745–758

    Article  CAS  Google Scholar 

  47. Chazen O, Hartung W, Neumann PM (1995) The different effects of PEG 6000 and NaCI on leaf development are associated with differential inhibition of root water transport. Plant Cell Environ 18:727–735. https://doi.org/10.1111/j.1365-3040.1995.tb00575.x

    Article  CAS  Google Scholar 

  48. Akram M, Akhtar S, Javed I, Wahid A, Rasul E (2002) Anatomical attributes of different wheat (Triticum aestivum) accessions/varieties to NaCl salinity. Int J Agric Biol 4:166–168

    Google Scholar 

  49. Momayezi M, Zaharah R, Hanafi M (2012) The effects of cation ratios on root lamella suberization in rice (Oryza sativa L.) with contrasting salt tolerance. Int J Agron 2012:1–8. https://doi.org/10.1155/2012/769196

    Article  CAS  Google Scholar 

  50. Vasellati V, Oesterheld M, Medan D, Loreti J (2001) Effects of flooding and drought on the anatomy of Paspalum dilatatum. Ann Bot 88:355–360. https://doi.org/10.1006/anbo.2001.1469

    Article  Google Scholar 

  51. Doblas VG, Geldner N, Barberon M (2017) The endodermis, a tightly controlled barrier for nutrients. Curr Opin Plant Biol 39:136–143. https://doi.org/10.1016/j.pbi.2017.06.010

    Article  PubMed  CAS  Google Scholar 

  52. Líška D, Martinka M, Kohanová J, Lux A (2016) Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses. Ann Bot 118:667–674. https://doi.org/10.1093/aob/mcw047

    Article  PubMed Central  CAS  Google Scholar 

  53. Reinhardt DH, Rost TL (1995) On the correlation of primary root growth and tracheary element size and distance from the tip in cotton seedlings grown under salinity. Environ Exp Bot 35:575–588. https://doi.org/10.1016/0098-8472(95)00018-6

    Article  Google Scholar 

  54. Fahn A, Cutler D (1992) Xerophytes. Gebrüder Borntraeger, Stuttgart

    Google Scholar 

  55. Barzegargolchini B, Movafeghi A, Dehestani A, Mehrabanjoubani P (2017) Increased cell wall thickness of endodermis and protoxylem in Aeluropus littoralis roots under salinity: the role of LAC4 and PER64 genes. J Plant Physiol 218:127–134. https://doi.org/10.1016/j.jplph.2017.08.002

    Article  PubMed  CAS  Google Scholar 

  56. Enstone DE, Peterson CA, Ma F (2002) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351. https://doi.org/10.1007/s00344-003-0002-2

    Article  CAS  Google Scholar 

  57. Búfalo J, Rodrigues TM, de Almeida LFR, Tozin LRS, Marques MOM, Boaro CSF (2016) PEG-induced osmotic stress in Mentha x piperita L.: structural features and metabolic responses. Plant Physiol Biochem 105:174–184. https://doi.org/10.1016/j.plaphy.2016.04.009

    Article  PubMed  CAS  Google Scholar 

  58. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol 17:490. https://doi.org/10.1093/treephys/17.7.490

    Article  Google Scholar 

  59. Hameed M, Nawaz T, Ashraf M et al (2013) Physioanatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the Salt Range, Pakistan. Turk J Bot 37:715–724. https://doi.org/10.3906/bot-1208-1

    Article  CAS  Google Scholar 

  60. Hameed M, Ashraf M, Naz N, Nawaz T, Batool R, Fatima S, Ahmad F (2014) Physiological adaptative characteristics of Imperata cylindrica for salinity tolerance. Biologia 69:1148–1156. https://doi.org/10.2478/s11756-014-0417-1

    Article  CAS  Google Scholar 

  61. Zhang H, Irving LJ, McGill C, Matthew C, Zhou D, Kemp P (2010) The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Ann Bot 106:1027–1035. https://doi.org/10.1093/aob/mcq204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are especially grateful to Néstor Luis Hladun, Antoni Llabrés Payeras, and Catalina Eugenia Luna for their laboratory assistance. The work was supported by the European project OPTIMA (Optimization of Perennial Grasses for Biomass Production, Grant Agreement No. 289642) and the Secretary of the Department of Science and Technology of the Universidad Nacional de Córdoba, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Arias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, C., Serrat, X., Moysset, L. et al. Morpho-Physiological Responses of Alamo Switchgrass During Germination and Early Seedling Stage Under Salinity or Water Stress Conditions. Bioenerg. Res. 11, 677–688 (2018). https://doi.org/10.1007/s12155-018-9930-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9930-3

Keywords

Navigation