Skip to main content

Saline–Alkaline Resistance: Physiological and Ecological Characteristics of Sheepgrass (Leymus chinensis)

  • Chapter
  • First Online:
Sheepgrass (Leymus chinensis): An Environmentally Friendly Native Grass for Animals

Abstract

Soil salinization is a serious problem in the sustainable development of agricultural resources especially for the arid- and semiarid regions throughout the world. Sheepgrass (Leymus chinensis (Trin.) Tzvel) is considered to be originally dormant species in Northeastern China where the soil is suffering from the saline–alkaline stress. Saline–alkaline stresses often show inhibiting effects on the growth of sheepgrass, while sheepgrass also develops a series of adapting strategies in response to the stress. This chapter covers the characteristics of seed germination, seedling growth, and photosynthetic characteristics of sheepgrass under saline–alkaline stress and explains how the species adapts to saline–alkaline stress in morphology and by osmotic adjustment and changes in antioxidant enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Khateeb SA (2006) Effect of salinity and temperature on germination, growth and ion relations of Panicum turgidum Forssk. Bioresour Technol 97(2):292–298

    Article  CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199(5):361–376

    Article  Google Scholar 

  • Bai WB, Li PF (2005) Effects of salt stress on growth, absorption and transportation of K+ and Na+ in Iris lactea. Soil 37:415–420

    CAS  Google Scholar 

  • Chen W, Feng C, Guo W et al (2011) Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis, and osmotic adjustment of cotton plants. Photosynthetica 49(3):417–425

    Article  CAS  Google Scholar 

  • Cui XY, Liu ZY, Hu YJ et al (2012) Comparison of osmoregulatory substance contents and antioxidase activity in leaves of Leymus chinensis in different salinized grassland. Chin J Grassl 34(5):40–46

    Google Scholar 

  • Deng W, Qiu SW, Liang ZW et al (2006) Background of regional eco-environment in Da’an sodic land experiment station of China. Science Press, Beijing

    Google Scholar 

  • Du ZC, Yang ZG (1983) Studies on characteristics of photosynthetic ecology in Leymus chinensis. Acta Bot Sin 4:78–87

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    Article  CAS  Google Scholar 

  • Gao YS, Wang SM, Zhang CL (2003) Plant adaptive and regulatory mechanism under salt stress. Acta Pratacul Sin 12(2):1–6

    Google Scholar 

  • Ghaderi-Far F, Gherekhloo J, Alimagham M (2010) Influence of environmental factors on seed germination and seedling emergence of yellow sweet clover (Melilotus officinalis). Planta Daninha 28(3):463–469

    Article  Google Scholar 

  • Gu AL, Yi J, Roman Holubowicz R et al (2005) Effects of low temperatures on seed germination of Leymus chinensis and Pascopyrum smithii. Chin J Grassl 27(2):50–54

    Google Scholar 

  • Hu G, Liu Y, Zhang X et al (2015) Physiological evaluation of alkali-salt tolerance of thirty Switchgrass (Panicum virgatum) lines. PLoS One 10(7):e0125305

    Article  Google Scholar 

  • Huang ZY, Zhang XS, Zheng GH (2003) Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. J Arid Environ 55(3):453–464

    Article  Google Scholar 

  • Huang LH, Liang ZW, Ma HY (2009) Effects of saline-sodic stress on the photosynthesis rate, transpiration rate and water use efficiency of Leymus chinensis. Acta Pratacul Sin 18(5):25–30

    Google Scholar 

  • Khan MA, Gulzar S (2003) Germination responses of Sporobolus ioclados: a saline desert grass. J Arid Environ 53(3):387–394

    Article  Google Scholar 

  • Li JD (1978) Leymus chinensis (Trin.) Kitagawa grassland in China. J Northeast Norm Univ (Nat Sci) 1:148–162

    Google Scholar 

  • Li LZ, Zhang DG, Xin XP et al (2009) Photosynthetic characteristic of Leymus chinensis under different soil moisture grades in Hulunber prairie. Acta Ecol Sin 29(10):5271–5279

    CAS  Google Scholar 

  • Li J, Yin LY, Jongsma MA et al (2011) Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (Tanacetum cinerariifolium). Ind Crop Prod 34(3):1543–1549

    Article  Google Scholar 

  • Liu GS, Qi DM (2004) Research progress on the biology of Leymus chinensis. Acta Pratacul Sin 13(5):6–11

    CAS  Google Scholar 

  • Liu BS, Zhong CL (2016) The changes of morphologic characteristics and antioxidant enzyme activity of Leymus chinensis under different levels of salt-alkali stress. Sci Technol Eng 16(34):158–161

    Google Scholar 

  • Liu CQ, Yang JS, Chen DM et al (2005) Responses to salt stress of crops different in salt tolerance. Acta Pedol Sin 42(6):993–998

    CAS  Google Scholar 

  • Liu BS, Kang CL, Wang X et al (2014) Physiological and biochemical response characteristics of Leymus chinensis to saline-alkali stress. Trans Chin Soc Agric Eng 30(23):166–173

    Google Scholar 

  • Lu JM, Zhang CZ, Zhang HQ et al (1994) The character of morphology anatomy of monocotyledons in saline-alkali soil of resistant and the study physiological adaptability interrelation. J Northeast Norm Univ 2:79–82

    Google Scholar 

  • Lv B, Ma H, Li XW et al (2015) Proline accumulation is not correlated with saline-alkaline stress tolerance in rice seedlings. Agron J 107(1):51–60

    Article  Google Scholar 

  • Ma HY, Liang ZW (2007a) Effects of storage conditions and sowing methods on seed germination of Leymus chinensis. Chin J Appl Ecol 18(5):999–1004

    Google Scholar 

  • Ma HY, Liang ZW (2007b) Effects of different soil pH and soil extracts on the germination and seedling growth of Leymus chinensis. Chin Bull Bot 24(2):181–188

    CAS  Google Scholar 

  • Ma HY, Liang ZW, Kong XJ et al (2008a) Effects of salinity, temperature and their interaction on the germination percentage and seedling growth of Leymus chinensis (Trin.) Tzvel. (Poaceae). Acta Ecol Sin 28(10):4710–4717

    CAS  Google Scholar 

  • Ma HY, Liang ZW, Kong XJ et al (2008b) Growth characteristics and adaptive mechanisms of Leymus chinensis in response to sodic saline stress varying in degree. Acta Pedol Sin 45(10):1203–1207

    Google Scholar 

  • Ma HY, Lv BS, Yang HY et al (2012) Response of seed germination of Leymus chinensis to environmental factors in degraded grassland on Songnen Plain in China. Chin J Plant Ecol 36(8):812–818

    Article  Google Scholar 

  • Ma HY, Yang HY, Lv XT et al (2015) Does high pH give a reliable assessment of the effect of alkaline soil on seed germination? A case study with Leymus chinensis (Poaceae). Plant Soil 394(1–2):35–43

    Article  CAS  Google Scholar 

  • Mahmood K (1998) Effects of salinity, external K+/Na+ ratio and soil moisture on growth and ion content of Sesbania rostrata. Biol Plant 41(2):297–302

    Article  CAS  Google Scholar 

  • Odorico P, Bhattachan A, Davis KF et al (2013) Global desertification: drivers and feedbacks. Adv Water Resour 51(1):326–344

    Article  Google Scholar 

  • Pandey VC, Singh K, Singh B et al (2011) New approaches to enhance eco-restoration efficiency of degraded sodic lands: critical research needs and future prospects. Ecol Restor 29(4):322–325

    Article  Google Scholar 

  • Panta S, Flowers T, Lane P et al (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83

    Article  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. Salinity: environment – plants-molecules. Springer Neth 2002:3–20

    Google Scholar 

  • Qadir M, Noble AD, Schubert S et al (2006) Sodicity-induced land degradation and its sustainable management: problems and prospects. Land Degrad Dev 17(6):661–676

    Article  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(7):1017–1023

    Article  CAS  Google Scholar 

  • Shi LX (2007) Study in photosynthetic and stress ecophysiology of Leymus chinensis along the salinity-alkalinity gradients on the Songnen grassland in northeastern China. Northeast Normal University

    Google Scholar 

  • Shi DC, Sheng YM, Zhao KF (1998) Simulated complex alkali-saline conditions and their effects on growth of Leymus chinensis seedlings. Acta Prata Sin 7(1):36–41

    Google Scholar 

  • Shi DC, Li YM, Yang GH et al (2002) A simulation of salt and alkali mixed ecological condition and analysis of their stress factors in the seedlings of Leymus chinensis. Acta Ecol Sin 22(8):1323–1332

    Google Scholar 

  • Sohrabikertabad S, Ghanbari A, Mohassel MH et al (2013) Effect of desiccation and salinity stress on seed germination and initial plant growth of Cucumis melo. Planta Daninha 31(14):833–841

    Article  Google Scholar 

  • Sun YL, Hong SK (2011) Effects of citric acid as an important component of the responses to saline and alkaline stress in the halophyte Leymus chinensis (Trin.). Plant Growth Regul 64(2):129–139

    Article  CAS  Google Scholar 

  • Taleisnik E, Pérez H, Córdoba A et al (1998) Salinity effects on the early development stages of Panicum coloratum: cultivar differences. Grass Forage Sci 53(3):270–278

    Google Scholar 

  • Wang DL, Wang ZW, Zhang XJ (1999) The comparison of photosynthetic characteristics between the two divergent Leymus chinensis types. Acta Ecol Sin 19(6):837–843

    Google Scholar 

  • Wang XT, Hou YL, Liu F et al (2011) Point pattern analysis of dominant populations in a degraded community in Leymus chinensis-Stipa grandis steppe in Inner Mongolia, China. Chin J Plant Ecol 35(12):1281–1289

    Article  Google Scholar 

  • Wang G, Zhang J, Wang G et al (2014) Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize. Plant Cell 26:2582–2600

    Article  CAS  Google Scholar 

  • Wang X, Zhu Y, Liu BS et al (2015) Changes of antioxidant enzymes in Leymus chinensis under saline-alkaline stress. Jiangsu Agric Sci 43(5):209–211

    Google Scholar 

  • Wong VNL, Greene RSB, Dalal RC et al (2010) Soil carbon dynamics in saline and sodic soils: a review. Soil Use Manag 26(1):2–11

    Article  Google Scholar 

  • Xu ZZ, Zhou GS (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224(5):1080–1090

    Article  CAS  Google Scholar 

  • Yan C (2008) Bioecological effects of Leymus chinensis on severe saline sodic soil. Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences

    Google Scholar 

  • Yan XF, Sun GR, Li JL et al (1994) A comparison study on photosynthesis and transpiration diurnal variation of Aneurolepidium chinense and Puccinellia tenuiflora. Bull Bot Res 14(3):287–291

    Google Scholar 

  • Yan H, Shi DC, Yin SJ et al (2000) Effects of saline-alkaline stress on the contents of nitrogen and several organisms of Aneurolepium chinense. J Northeast Norm Univ 32(3):47–52

    CAS  Google Scholar 

  • Yan H, Zhao W, Sheng YM et al (2005) Effects of alkali-stress on Aneurolepidium chinense and helianthus annuus. Chin J Appl Ecol 16(8):1497–1501

    CAS  Google Scholar 

  • Yi J (1994) Study on dormancy of Leymus chinensis seeds. Grassl China 6:1–6

    Google Scholar 

  • Zhang JS (1999) Plant physiology. World Book Publishing, Xi’an

    Google Scholar 

  • Zhang CN, Guo R, Shi LX (2008) Growth and protective enzyme activity of Leymus chinensis along the salinity-alkalinity gradients on Songnen Grassland in northeastern China. J Changchun Norm Univ. (Natural Science) 27(1):67–72

    Google Scholar 

  • Zhao KF, Jun L (1999) Effects of salinity on the contents of osmotica of monocotyledonous halophytes and their contribution to osmotic adjustment. Acta Bot Sin 41(12):1287–1292

    Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  Google Scholar 

  • Zhu TC (2004) Bioecology of Leymus chinensis. Jilin Science and Technology Press, Changchun

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyuan Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, H. (2019). Saline–Alkaline Resistance: Physiological and Ecological Characteristics of Sheepgrass (Leymus chinensis). In: Liu, G., Li, X., Zhang, Q. (eds) Sheepgrass (Leymus chinensis): An Environmentally Friendly Native Grass for Animals. Springer, Singapore. https://doi.org/10.1007/978-981-13-8633-6_6

Download citation

Publish with us

Policies and ethics