Skip to main content
Log in

Identifying Morphological and Mechanical Traits Associated with Stem Lodging in Bioenergy Sorghum (Sorghum bicolor)

  • Published:
BioEnergy Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Stem lodging in Sorghum is a major agronomic problem that has far-reaching economic consequences. More rapid and reliable advances in stem lodging resistance could be achieved through development of selective breeding tools that are not dependent on post hoc data or dependent on abiotic or biotic environmental factors. Our objective was to use sorghum to examine how mechanical stability is achieved and lost, and to provide insights into the development of a rapid and reliable phenotyping approach. The biomechanical properties of the stems of six bioenergy sorghum genotypes were investigated using a three-point bending test protocol. Important morphometric data were also collected, and previously collected lodging scores were used to associate with morphological and mechanical traits. Nodes were two to three-folds stronger, stiffer, and more rigid than internodes. In general, internodes were numerically weakest and more rigid between internodes 3 and 6, corresponding to the area where higher stem lodging is observed. Internode strength was negatively correlated with diameter (r = −0.77, P < 0.05) and volume (r = 0.96, P < 0.01), while stem lodging was positively correlated with flexural rigidity (r = 0.85, P < 0.05) and volume (r = 0.78, P < 0.05). The analysis revealed key functional traits that influence the mode and location of stem lodging. Moreover, these results indicate the potential of these methods as a selective breeding tool for indirect selection of stem lodging resistance in bioenergy sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Speck T, Burgert I (2011) Plant stems: functional design and mechanics. Annu Rev Mater Res 41:169–193

    Article  CAS  Google Scholar 

  2. Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9(76):2749–2766. doi:10.1098/rsif.2012.0341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Niklas KJ, Spatz H-C (2012) Plant physics. University of Chicago Press, Chicago

    Book  Google Scholar 

  4. Wang X, Keplinger T, Gierlinger N, Burgert I (2014) Plant material features responsible for bamboo’s excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels. Ann Bot 114(8):1627–1635. doi:10.1093/aob/mcu180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gardiner B, Berry P, Moulia B (2016) Review: Wind impacts on plant growth, mechanics and damage. Plant Sci 245:94–118

    Article  CAS  PubMed  Google Scholar 

  6. Berry P, Sterling M, Spink J, Baker C, Sylvester-Bradley R, Mooney S, Tams A, Ennos A (2004) Understanding and reducing lodging in cereals. Adv Agron 84:217–271

    Article  Google Scholar 

  7. Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  8. Sterling M, Baker C, Berry P, Wade A (2003) An experimental investigation of the lodging of wheat. Agric For Meteorol 119(3):149–165

    Article  Google Scholar 

  9. Tvd W, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107

    Google Scholar 

  10. Maiti R (2012) Crop plant anatomy. CABI, Wallingford

    Book  Google Scholar 

  11. Niklas KJ (1998) Modes of mechanical failure of hollow, septate stems. Ann Bot 81(1):11–21. doi:10.1006/anbo.1997.0505

    Article  Google Scholar 

  12. Farquhar T, Zhou J, Wood WH (2002) Competing effects of buckling and anchorage strength on optimal wheat stalk geometry. J Biomech Eng 124(4):441. doi:10.1115/1.1488934

    Article  PubMed  Google Scholar 

  13. Esechie H, Maranville J, Ross W (1977) Relationship of stalk morphology and chemical composition to lodging resistance in sorghum. Crop Sci 17(4):609–612

    Article  CAS  Google Scholar 

  14. Niklas KJ (1990) The mechanical significance of clasping leaf sheaths in grasses: evidence from two cultivars of Avena sativa. Ann Bot 65(5):505–512

    Article  Google Scholar 

  15. Niklas KJ (1998) The mechanical roles of clasping leaf sheaths: evidence from Arundinaria técta (Poaceae) shoots subjected to bending and twisting forces. Ann Bot 81(1):23–34

    Article  Google Scholar 

  16. Niklas K (1997) Relative resistance of hollow, septate internodes to twisting and bending. Ann Bot 80(3):275–287. doi:10.1006/anbo.1997.0452

    Article  Google Scholar 

  17. Brenton ZW, Cooper EA, Myers MT, Boyles RE, Shakoor N, Zielinski KJ, Rauh BL, Bridges WC, Morris GP, Kresovich S (2016) A genomic resource for the development, improvement, and exploitation of sorghum for bioenergy. Genetics 204(1):21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B, Anderson R, Olson SN, Rooney W (2014) Energy sorghum—a genetic model for the design of C4 grass bioenergy crops. J Exp Bot 65(13):3479–3489. doi:10.1093/jxb/eru229

    Article  PubMed  Google Scholar 

  19. Vermerris W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. J Integr Plant Biol 53(2):105–119. doi:10.1111/j.1744-7909.2010.01020.x

    Article  PubMed  Google Scholar 

  20. Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefin 1(2):147–157

    Article  CAS  Google Scholar 

  21. Calviño M, Messing J (2012) Sweet sorghum as a model system for bioenergy crops. Curr Opin Biotechnol 23(3):323–329

    Article  PubMed  Google Scholar 

  22. Saballos A (2008) Development and utilization of sorghum as a bioenergy crop. Genetic improvement of bioenergy crops. Springer, New York, pp 211–248

    Book  Google Scholar 

  23. TERRA (2015) Financial assistance funding opportunity announcement no. DE-FOA-0001211. Technical report. Advanced Research Projects Agency—Energy, Washington

    Google Scholar 

  24. Fedenko JR, Erickson JE, Singh MP (2015) Root lodging affects biomass yield and carbohydrate composition in sweet sorghum. Ind Crop Prod 74:933–938

    Article  CAS  Google Scholar 

  25. Worley JW, Cundiff JS, Vaughan DH, Parrish DJ (1991) Influence of sweet sorghum spacing on stalk pith yield. Bioresour Technol 36:133–139

    Article  Google Scholar 

  26. Monk R, Miller F, McBee G (1984) Sorghum improvement for energy production. Biomass 6(1):145–153

    Article  Google Scholar 

  27. Regassa TH, Wortmann CS (2014) Sweet sorghum as a bioenergy crop: literature review. Biomass Bioenergy 64:348–355. doi:10.1016/j.biombioe.2014.03.052

    Article  CAS  Google Scholar 

  28. Gill JR, Burks PS, Staggenborg SA, Odvody GN, Heiniger RW, Macoon B, Moore KJ, Barrett M, Rooney WL (2014) Yield results and stability analysis from the sorghum regional biomass feedstock trial. BioEnergy Res 7(3):1026–1034. doi:10.1007/s12155-014-9445-5

    Article  CAS  Google Scholar 

  29. Godoy JGV, Tesso TT (2013) Analysis of juice yield, sugar content, and biomass accumulation in sorghum. Crop Sci 53(4):1288. doi:10.2135/cropsci2012.04.0217

    Article  Google Scholar 

  30. Rosenow D, Clark L Drought and lodging resistance for a quality sorghum crop. Proceedings of the 5th annual corn and sorghum industry research conference (Chicago, IL, 6–7 December 1995), American Seed Trade Association, Chicago, ate 1995. pp 82–97

  31. Bean B, Baumhardt R, McCollum F, McCuistion K (2013) Comparison of sorghum classes for grain and forage yield and forage nutritive value. Field Crop Res 142:20–26

    Article  Google Scholar 

  32. Chattopadhyay PS, Pandey KP (1999) Mechanical properties of sorghum stalk in relation to quasi-static deformation. J Agric Eng Res 73(2):199–206. doi:10.1006/jaer.1999.0406

    Article  Google Scholar 

  33. Bakeer B, Taha I, El-Mously H, Shehata SA (2013) On the characterisation of structure and properties of sorghum stalks. Ain Shams Eng J 4(2):265–271. doi:10.1016/j.asej.2012.08.001

    Article  Google Scholar 

  34. Bashford LL, Maranville JW, Weeks SA, Campbell R (1976) Mechanical-properties affecting lodging of sorghum. Trans ASAE 19(5):962–966

    Article  Google Scholar 

  35. Lemloh M-L, Pohl A, Weber E, Zeiger M, Bauer P, Weiss IM, Schneider AS (2014) Structure-property relationships in mechanically stimulated Sorghum bicolor stalks. Bioinspir Mat 1(1)

  36. Hesse L, Wagner ST, Neinhuis C (2016) Biomechanics and functional morphology of a climbing monocot. AoB Plants 8:plw005

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ennos A (1997) Wind as an ecological factor. Trends Ecol Evol 12(3):108–111

    Article  CAS  PubMed  Google Scholar 

  38. Oladokun MA, Ennos AR (2006) Structural development and stability of rice Oryza sativa L. var. Nerica 1. J Exp Bot 57(12):3123–3130. doi:10.1093/jxb/erl074

    Article  CAS  PubMed  Google Scholar 

  39. Vanderlip R (1993) How a sorghum plant develops. Kansas State University, Manhattan

    Google Scholar 

  40. Brulé V, Rafsanjani A, Pasini D, Western TL (2016) Hierarchies of plant stiffness. Plant Sci 250:79–96

    Article  PubMed  Google Scholar 

  41. Robertson D, Smith S, Gardunia B, Cook D (2014) An improved method for accurate phenotyping of corn stalk strength. Crop Sci 54(5):2038. doi:10.2135/cropsci2013.11.0794

    Article  Google Scholar 

  42. Robertson DJ, Smith SL, Cook DD (2015) On measuring the bending strength of septate grass stems. Am J Bot 102(1):5–11. doi:10.3732/ajb.1400183

    Article  PubMed  Google Scholar 

  43. Gere J, Timoshenko S (1984) Mechanics of materials. Wadsworth, Belmont, pp 351–355

    Google Scholar 

  44. Wagner ST, Isnard S, Rowe NP, Samain M-S, Neinhuis C, Wanke S (2012) Escaping the lianoid habit: evolution of shrub-like growth forms in Aristolochia subgenus Isotrema (Aristolochiaceae). Am J Bot 99(10):1609–1629

    Article  PubMed  Google Scholar 

  45. Moulia B (2013) Plant biomechanics and mechanobiology are convergent paths to flourishing interdisciplinary research. J Exp Bot 64(15):4617–4633. doi:10.1093/jxb/ert320

    Article  CAS  PubMed  Google Scholar 

  46. Rowe NP, Isnard S, Gallenmüller F, Speck T (2006) Diversity of mechanical architectures in climbing plants: an ecological perspective. Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. CRC, p 35–59

  47. Rowe NP, Speck T (1998) Biomechanics of plant growth forms: the trouble with fossil plants. Rev Palaeobot Palynol 102(1):43–62

    Article  Google Scholar 

  48. Schulgasser K, Witztum A (1997) On the strength of herbaceous vascular plant stems. Ann Bot 80(1):35–44

    Article  Google Scholar 

  49. JMP® 12 Fitting Linear Models (2015). 12 edn. SAS Institute Inc., Cary

  50. Pernet CR, Wilcox RR, Rousselet GA (2013) Robust correlation analyses: false positive and power validation using a new open source Matlab toolbox. Front Psychol 3:606

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ennos A (2000) The mechanics of root anchorage. Adv Bot Res 33:133–157

    Article  Google Scholar 

  52. Fujii A, Nakamura S, Goto Y (2014) Relation between stem growth processes and internode length patterns in sorghum cultivar ‘Kazetachi’. Plant Prod Sci 17(2):185–193

    Article  Google Scholar 

  53. Taylor D, Kinane B, Sweeney C, Sweetnam D, O’Reilly P, Duan K (2015) The biomechanics of bamboo: investigating the role of the nodes. Wood Sci Technol 49(2):345–357

    Article  CAS  Google Scholar 

  54. Robertson DJ, Julias M, Gardunia BW, Barten T, Cook DD (2015) Corn stalk lodging: a forensic engineering approach provides insights into failure patterns and mechanisms. Crop Sci 55(6):2833. doi:10.2135/cropsci2015.01.0010

    Article  CAS  Google Scholar 

  55. Paul-Victor C, Rowe N (2011) Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development of inflorescence stems of Arabidopsis thaliana. Ann Bot 107(2):209–218. doi:10.1093/aob/mcq227

    Article  CAS  PubMed  Google Scholar 

  56. Henry H, Aarssen L (1999) The interpretation of stem diameter–height allometry in trees: biomechanical constraints, neighbour effects, or biased regressions? Ecol Lett 2(2):89–97

    Article  Google Scholar 

  57. Cordero RA (2016) Neighbourhood structure and light availability influence the variations in plant design of shrubs in two cloud forests of different successional status. Ann Bot 118(1):23–34

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mäkelä A, Vanninen P (1998) Impacts of size and competition on tree form and distribution of aboveground biomass in Scots pine. Can J For Res 28(2):216–227

    Article  Google Scholar 

  59. Niklas KJ, Hammond ST (2013) Biophysical effects on plant competition and coexistence. Funct Ecol 27(4):854–864

    Article  Google Scholar 

  60. Read J, Stokes A (2006) Plant biomechanics in an ecological context. Am J Bot 93(10):1546–1565. doi:10.3732/ajb.93.10.1546

    Article  PubMed  Google Scholar 

  61. Hambäck PA, Beckerman AP (2003) Herbivory and plant resource competition: a review of two interacting interactions. Oikos 101(1):26–37

    Article  Google Scholar 

  62. Rutto LK, Xu Y, Brandt M, Ren S, Kering MK (2013) Juice, ethanol, and grain yield potential of five sweet sorghum (Sorghum bicolor [L.] Moench) cultivars. Journal of Sustainable Bioenergy Systems 03(02):113–118. doi:10.4236/jsbs.2013.32016

    Article  CAS  Google Scholar 

  63. Vogel S (2013) Comparative biomechanics: life’s physical world. Princeton University Press, Princeton

    Google Scholar 

  64. Sleper DA, Poehlman JM (2006) Breeding field crops, 5th edn. Blackwell, Oxford

    Google Scholar 

  65. Niklas KJ, Speck T (2001) Evolutionary trends in safety factors against wind-induced stem failure. Am J Bot 88(7):1266–1278

    Article  CAS  PubMed  Google Scholar 

  66. Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Texas A&M University Louis Stokes Bridge to Doctorate Fellowship VII Award (No. 1249272) for a graduate fellowship and financial support granted to F.G. The authors would like to  thank Dr. K. Rajagopal for his academic support, Stephen Labar for building the three-point bending test used in this study, and Ceres Corp. for kindly providing seed source and lodging information for some of the genotypes used in this study. The authors would also like to thank all the student workers at the Texas A&M Sorghum Breeding Program for their help phenotyping. We are grateful to the Editor, Antje Herrmann, and two other anonymous reviewers for their comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco E. Gomez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 9281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, F.E., Muliana, A.H., Niklas, K.J. et al. Identifying Morphological and Mechanical Traits Associated with Stem Lodging in Bioenergy Sorghum (Sorghum bicolor). Bioenerg. Res. 10, 635–647 (2017). https://doi.org/10.1007/s12155-017-9826-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9826-7

Keywords

Navigation