Skip to main content

Advertisement

Log in

A Single and Robust Critical Nitrogen Dilution Curve for Miscanthus × giganteus and Miscanthus sinensis

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The sustainable development of miscanthus as a bioenergy feedstock requires optimizing its fertilizer inputs and, therefore, determining its nitrogen (N) requirements. The ‘critical nitrogen dilution curve’ is a powerful tool to characterize such N requirements; it relates the N concentration ([N]) in aboveground organs to their biomass, defining two domains depending on whether the N factor limits biomass growth or not. We aimed to develop such a tool in miscanthus. Using a rhizome N depletion strategy with green cutting pre-treatment over several years before the start of the experiment, we grew, in 2014, two cultivated species, Miscanthus × giganteus (M×g) and Miscanthus sinensis (Msin), at four fertilizer levels (0, 80, 160 and 240 kg N ha−1). We found a strong nitrogen fertilization effect. The shoot [N] decreased as the aboveground biomass increased in both species and in all of the treatments. [N] was strongly correlated with leaf/stem biomass ratio. The N treatments enabled the identification of the observed critical points, i.e. points with the maximum biomass (W) and the lowest [N], on each measurement date. These points could be fitted to the following critical dilution curve that was common between M×g and Msin: N concentration (Nc) (critical [N], g N kg−1) = 27.0 W −0.48 when W > 1 t ha−1 and Nc = 27.0 when W ≤ 1. This curve was validated by literature data, separated into N-limited or not-limited conditions. The similarity of the curves between the two species was due to compensation between leaf/stem biomass ratio and [N] in the stems. This curve is helpful to diagnose the crop N status and define the optimal fertilizer requirements of miscanthus crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

(M×g):

Miscanthus × giganteus

(Msin):

Miscanthus sinensis Goliath

N:

Nitrogen

[N]:

Nitrogen concentration (g N kg−1)

QN :

Nitrogen quantity (kg N ha−1)

W :

Dry matter production (t ha−1)

Nc :

Critical [N] (g N kg−1) is defined as the minimum concentration of N that is required in shoots at a given time to maximize the aboveground biomass

Observed critical N points:

couple of points ([N], W) selected to fit the N dilution curve

Observed critical [N] or W :

[N] or W of the observed critical N points

References

  1. Barosi R, Spinelli D, Fierro A, Jez S (2014) Mineral nitrogen fertilizers: environmental impact of production and use. In: Fertil. Compon. Uses Agric. Environ. Impacts, Nova science publishers. Lopez-Valdez, F and Fernandez-Luquenos, F, New York, pp 3–44

  2. Beale CV, Long SP (1997) Seasonal dynamics of nutrient accumulation and partitioning in the perennial c4-grasses Miscanthus × giganteus and Spartina cynosuroides. Biomass Bioenergy 12:419–428

    Article  Google Scholar 

  3. Dohleman FG, Heaton EA, Arundale RA, Long SP (2012) Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy 4:534–544. doi:10.1111/j.1757-1707.2011.01153.x

    Article  CAS  Google Scholar 

  4. Strullu L, Cadoux S, Preudhomme M, et al. (2011) Biomass production and nitrogen accumulation and remobilisation by Miscanthus × giganteus as influenced by nitrogen stocks in belowground organs. Field Crop Res 121:381–391. doi:10.1016/j.fcr.2011.01.005

    Article  Google Scholar 

  5. Clifton-brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509–518. doi:10.1111/j.1529-8817.2003.00749.x

    Article  Google Scholar 

  6. Lewandowski I, Schmidt U (2006) Nitrogen, energy and land use efficiencies of Miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric Ecosyst Environ 112:335–346. doi:10.1016/j.agee.2005.08.003

    Article  Google Scholar 

  7. Zub HW, Arnoult S, Brancourt-Hulmel M (2011) Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass Bioenergy 35:637–651. doi:10.1016/j.biombioe.2010.10.020

    Article  Google Scholar 

  8. Lesur C, Bazot M, Bio-Beri F, et al. (2014) Assessing nitrate leaching during the three-first years of Miscanthus × giganteus from on-farm measurements and modeling. GCB Bioenergy 6:439–449. doi:10.1111/gcbb.12066

    Article  CAS  Google Scholar 

  9. Ferchaud F, Mary B (2016) Drainage and nitrate leaching assessed during 7 years under perennial and annual bioenergy crops. BioEnergy Res 9:656–670. doi:10.1007/s12155-015-9710-2

    Article  CAS  Google Scholar 

  10. Dauber J, Jones MB, Stout JC (2010) The impact of biomass crop cultivation on temperate biodiversity: biomass crops and biodiversity. GCB Bioenergy 2:289–309. doi:10.1111/j.1757-1707.2010.01058.x

    Article  Google Scholar 

  11. Lewandowski I, Heinz A (2003) Delayed harvest of Miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron 19:45–63

    Article  Google Scholar 

  12. Lesur C, Jeuffroy M-H, Makowski D, et al. (2013) Modeling long-term yield trends of Miscanthus × giganteus using experimental data from across Europe. Field Crop Res 149:252–260. doi:10.1016/j.fcr.2013.05.004

    Article  Google Scholar 

  13. Laurent A, Pelzer E, Loyce C, Makowski D (2015) Ranking yields of energy crops: a meta-analysis using direct and indirect comparisons. Renew Sust Energ Rev 46:41–50. doi:10.1016/j.rser.2015.02.023

    Article  Google Scholar 

  14. Zub HW, Arnoult S, Younous J, et al. (2012) The frost tolerance of Miscanthus at the juvenile stage: differences between clones are influenced by leaf-stage and acclimation. Eur J Agron 36:32–40. doi:10.1016/j.eja.2011.08.001

    Article  Google Scholar 

  15. Cosentino SL, Patanè C, Sanzone E, et al. (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean environment. Ind Crop Prod 25:75–88. doi:10.1016/j.indcrop.2006.07.006

    Article  Google Scholar 

  16. Strullu L, Cadoux S, Beaudoin N, Jeuffroy M-H (2013) Influence of belowground nitrogen stocks on light interception and conversion of Miscanthus × giganteus. Eur J Agron 47:1–10. doi:10.1016/j.eja.2013.01.003

    Article  Google Scholar 

  17. Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327. doi:10.1016/j.indcrop.2008.02.009

    Article  Google Scholar 

  18. Danalatos N, Archontoulis S, Mitsios I (2007) Potential growth and biomass productivity of Miscanthus × giganteus as affected by plant density and N-fertilization in central Greece. Biomass Bioenergy 31:145–152. doi:10.1016/j.biombioe.2006.07.004

    Article  Google Scholar 

  19. Himken M, Lammel J, Neukirchen D, et al. (1997) Cultivation of Miscanthus under West European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189:117–126

    Article  CAS  Google Scholar 

  20. Larsen SU, Jørgensen U, Kjeldsen JB, Lærke PE (2014) Long-term Miscanthus yields influenced by location, genotype, row distance, fertilization and harvest season. BioEnergy Res 7:620–635. doi:10.1007/s12155-013-9389-1

    Article  Google Scholar 

  21. Schwarz H, Liebhard P, Ehrendorfer K, Ruckenbauer P (1994) The effect of fertilization on yield and quality of Miscanthus sinensis “Giganteus.”. Ind Crop Prod 2:153–159. doi:10.1016/0926-6690(94)90031-0

    Article  Google Scholar 

  22. Behnke GD, David MB, Voigt TB (2012) Greenhouse gas emissions, nitrate leaching, and biomass yields from production of Miscanthus × giganteus in Illinois, USA. BioEnergy Res 5:801–813. doi:10.1007/s12155-012-9191-5

    Article  CAS  Google Scholar 

  23. Palmer IE, Gehl RJ, Ranney TG, et al. (2014) Biomass yield, nitrogen response, and nutrient uptake of perennial bioenergy grasses in North Carolina. Biomass Bioenergy 63:218–228. doi:10.1016/j.biombioe.2014.02.016

    Article  CAS  Google Scholar 

  24. Heaton E (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30. doi:10.1016/j.biombioe.2003.10.005

    Article  Google Scholar 

  25. Miguez FE, Villamil MB, Long SP, Bollero GA (2008) Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production. Agric For Meteorol 148:1280–1292. doi:10.1016/j.agrformet.2008.03.010

    Article  Google Scholar 

  26. Arundale RA, Dohleman FG, Voigt TB, Long SP (2014) Nitrogen fertilization does significantly increase yields of stands of Miscanthus × giganteus and Panicum virgatum in multiyear trials in Illinois. BioEnergy Res 7:408–416. doi:10.1007/s12155-013-9385-5

    Article  CAS  Google Scholar 

  27. An G-H, Miyakawa S, Kawahara A, et al. (2008) Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulfate soils: habitat segregation along pH gradients. Soil Sci Plant Nutr 54:517–528. doi:10.1111/j.1747-0765.2008.00267.x

    Article  Google Scholar 

  28. Eckert B, Weber OB, Kirchhof G, et al. (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26. doi:10.1099/00207713-51-1-17

    Article  CAS  PubMed  Google Scholar 

  29. Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing Clostridia from the Grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586. doi:10.1128/AEM.70.11.6580-6586.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Justes E (1994) Determination of a scritical nitrogen dilution curve for winter wheat crops. Ann Bot 74:397–407. doi:10.1006/anbo.1994.1133

    Article  CAS  Google Scholar 

  31. Lemaire G, Gastal F (1997) N uptake and distribution in plant canopies. In: Diagn. nitrogen status crops. Springer, Berlin, Heidelberg, pp. 3–44

    Chapter  Google Scholar 

  32. Greenwood DJ, Lemaire G, Gosse G, et al. (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 64:425–436

    Article  Google Scholar 

  33. Plénet D, Cruz P (1997) The nitrogen requirement of major agricultural crops : maize and sorghum. In: Diagn. nitrogen status crops, Springer. Lemaire, G, pp 93–106

  34. Cadoux S, Riche AB, Yates NE, Machet J-M (2012) Nutrient requirements of Miscanthus × giganteus : conclusions from a review of published studies. Biomass Bioenergy 38:14–22. doi:10.1016/j.biombioe.2011.01.015

    Article  CAS  Google Scholar 

  35. Arnoult S, Brancourt-Hulmel M (2014) A review on miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. BioEnergy Res. doi:10.1007/s12155-014-9524-7

    Google Scholar 

  36. Ferchaud F, Vitte G, Machet J-M, et al. (2016) The fate of cumulative applications of 15N-labelled fertiliser in perennial and annual bioenergy crops. Agric Ecosyst Environ 223:76–86. doi:10.1016/j.agee.2016.02.030

    Article  Google Scholar 

  37. Gastal F, Lemaire G (2002) N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot 53:789–799. doi:10.1093/jexbot/53.370.789

    Article  CAS  PubMed  Google Scholar 

  38. Purdy SJ, Cunniff J, Maddison AL, et al. (2015) Seasonal carbohydrate dynamics and climatic regulation of senescence in the perennial grass, Miscanthus. BioEnergy Res 8:28–41. doi:10.1007/s12155-014-9500-2

    Article  CAS  Google Scholar 

  39. Justes E, Jeuffroy M-H, Mary B (1997) The nitrogen requirement of major agricultural crops : wheat, barley, and durum wheat. In: Diagn. nitrogen status crops, Springer. Lemaire, G, pp 73–92

  40. Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO J Hum Environ 31:132–140. doi:10.1579/0044-7447-31.2.132

    Article  Google Scholar 

  41. Caloin M, Yu O (1984) Analysis of the time course of change in nitrogen content in Dactylis glomerata L. using a model of plant growth. Ann Bot:69–76

  42. Lemaire G, Meynard J (1997) Use of nitrogen nutrition index for the analyses of agronomical data. Diagn. nitrogen status crops

  43. Laperche A, Le Gouis J, Hanocq E, Brancourt-Hulmel M (2007) Modelling nitrogen stress with probe genotypes to assess genetic parameters and genetic determinism of winter wheat tolerance to nitrogen constraint. Euphytica 161:259–271. doi:10.1007/s10681-007-9433-3

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed in partnership with the SAS PIVERT, within the frame of French Institute for the Energy Transition (Institut pour la Transition Energétique (ITE)) PIVERT selected as an investment for the future (‘Investissement d’Avenir’). This work was supported, as part of investments for the future, by French government under the reference ANR-001-01.

The authors would like to acknowledge the support they received from the Picardie Region (MiscPic Project). They also thank Arvalis Bazièges, CRA Bretagne and INRA UE Ferlus who provided data on M. × giganteus for the validation of the critical N dilution curve. Finally, the authors would also like to thank the reviewers for their interesting comments and Marie-Chantal Mansard, Benoît Decaux, Stéphanie Arnoult, Julie Leroy and Valentine Hyuart who largely contribute to the field experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zapater.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapater, M., Catterou, M., Mary, B. et al. A Single and Robust Critical Nitrogen Dilution Curve for Miscanthus × giganteus and Miscanthus sinensis . Bioenerg. Res. 10, 115–128 (2017). https://doi.org/10.1007/s12155-016-9781-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9781-8

Keywords

Navigation