Skip to main content

Advertisement

Log in

Greenhouse Gas Emissions, Nitrate Leaching, and Biomass Yields from Production of Miscanthus × giganteus in Illinois, USA

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Understanding the effects of nitrogen (N) fertilization on Miscanthus × giganteus greenhouse gas emissions, nitrate leaching, and biomass production is an important consideration when using this grass as a biomass feedstock. The objective of this study was to determine the effect of three N fertilization rates (0, 60, and 120 kg N ha−1 using urea as the N source) on nitrous oxide (N2O) and carbon dioxide (CO2) emissions, nitrogen leaching, and the biomass yields and N content of M. × giganteus planted in July 2008, and evaluated from 2009 through early 2011 in Urbana, Illinois, USA. While there was no biomass yield response to N fertilization rates in 2009 and 2010, the amount of N in the harvested biomass in 2010 was significantly greater at the 60 and 120 kg N ha−1 N rates. There was no significant CO2 emission response to N rates in 2009 or 2010. Similarly, N fertilization did not increase cumulative N2O emissions in 2009, but cumulative N2O emissions did increase in 2010 with N fertilization. During 2009, nitrate (NO 3 ) leaching at the 50-cm soil depth was not related to fertilization rate, but there was a significant increase in NO 3 leaching between the 0 and 120 kg N ha−1 treatments in 2010 (8.9 and 28.9 kg NO3–N ha−1 year−1, respectively). Overall, N fertilization of M. × giganteus led to N2O releases, increased fluxes of inorganic N (primarily NO 3 ) through the soil profile; and increased harvested N without a significant increase in biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB et al. (eds) (2007) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, (2007) Cambridge University Press, Cambridge, UK <http://www.ipccch/publications_and_data/ar4/wg1/en/contentshtml>

  2. Ravishankara AR, Daniel JS, Portman RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st Century. Science 326:123–125

    Article  PubMed  CAS  Google Scholar 

  3. Synder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosys Environ 133:247–266

    Article  Google Scholar 

  4. David MB, Gentry LE, Kovacic DA, Smith KM (1997) Nitrogen balance in and export from an agricultural watershed. J Environ Qual 26:1038–1048

    Article  CAS  Google Scholar 

  5. Gentry LE, David MB, Below FE, Royer TV, McIsaac GF (2009) Nitrogen mass balance of a tile-drained agricultural watershed in east-central Illinois. J Environ Qual 38:1841–1847

    Article  PubMed  CAS  Google Scholar 

  6. Christian DG, Riche AB (1998) Nitrate leaching losses under Miscanthus grass planted on a silty clay loam. Soil Use Manag 14:131–135

    Article  Google Scholar 

  7. Gentry LE, David MB, Smith KM, Kovacic DA (1998) Nitrogen cycling and tile drainage nitrate loss in a corn/soybean watershed. Ag Ecosys Environ 68:85–97

    Article  CAS  Google Scholar 

  8. Borah DK, Demissie M, Keefer LL (2002) AGNPS-based assessment of the impact of BMPs on nitrate-nitrogen discharging into an Illinois water supply lake. Water Int 27:255–265

    Article  CAS  Google Scholar 

  9. USEPA (2008) Hypoxia in the northern Gulf of Mexico: An update by the EPA Science Advisory Board. EPA-SAB-08-004. USEPA, Washington, DC

    Google Scholar 

  10. McIsaac GF, David MB, Mitchell CA (2010) Miscanthus and switchgrass in Central Illinois: impacts on hydrology and inorganic nitrogen leaching. J Environ Qual 39:1790–1799

    Article  PubMed  Google Scholar 

  11. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Physics 8:389–395

    Article  CAS  Google Scholar 

  12. Lewandowski I, Kicherer A, Vonier P (1995) CO2-Balance for the cultivation and combustion of Miscanthus. Biomass Bioenerg 8:81–90

    Article  CAS  Google Scholar 

  13. Jørgensen U, Muhs H-J (2001) Miscanthus breeding and improvement. In: Jones MB, Walsh M (eds) Miscanthus for energy and fiber. James and James Science Publishers, London

    Google Scholar 

  14. Greef JM, Deuter M, Jung C, Schindelmaier J (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genetic Resour Crop Evolution 44:185–195

    Article  Google Scholar 

  15. Beale CV, Bint DA, Long SP (1996) Leaf photosynthesis in the C4-grass Miscanthus × giganteus, growing in the cool temperate climate of southern England. J Exp Bot 47:267–273

    Article  CAS  Google Scholar 

  16. Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, Widholm J et al (2010) Miscanthus: a promising biomass crop. Adv Bot Res 56:75–137

    Article  Google Scholar 

  17. Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327

    Article  Google Scholar 

  18. Miguez FE, Villamil MB, Long SP, Bollero GA (2008) Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production. Agric Forest Meteorol 148:1280–1292

    Article  Google Scholar 

  19. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biol 14:2000–2014

    Article  Google Scholar 

  20. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  21. Lewandowski I, Kicherer A (1997) Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. Europ J Agron 6:163–177

    Article  Google Scholar 

  22. Heaton EA, Dohleman FG, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus × giganteus and Panicum virgatum. Global Change Biol Bioenerg 1:297–307

    Article  CAS  Google Scholar 

  23. Jørgensen U (1997) Genotypic variation in dry matter accumulation and content of N, K, and Cl in Miscanthus in Denmark. Biomass Bioenergy 12:155–169

    Article  Google Scholar 

  24. Hughes JK, Lloyd AJ, Huntingford C, Finch JW, Harding RJ (2010) The impact of extensive planting of Miscanthus as an energy crop on future CO2 atmospheric concentrations. Global Change Biol Bioenerg 2:79–88

    Article  CAS  Google Scholar 

  25. Jørgensen NR, Jørgensen B, Neilsen N, Maag M, Lind A (1997) N2O emission from energy crop fields of Miscanthus “giganteus” and winter rye. Atmos Environ 31:2899–2904

    Article  Google Scholar 

  26. Maughan, M. G. Bollero, D.K. Lee, R. Darmody, S. Bonos, L. Cortese, J. Murphy, R. Gaussoin, M. Sousek, D. Williams, L. Williams, F. Miguez, and T. Voigt. 2011. Miscanthus × giganteus productivity: The effects of management in different environments. Global Change Biol Bioenerg (http://onlinelibrary.wiley.com/doi/10.1111/j.1757-1707.2011.01144.x/full)

  27. Baker J, Doyle G, McCarty G, Mosier A, Parkin T, Reicosky D, Smith J, Venterea R (2003) GRACEnet: chamber-based trace gas flux measurement protocol. Trace Gas Protocol Development Committee

  28. Brookside Laboratories, Inc (2000) Soil Methodologies: (for standard packages). <http://www.blinccom/worksheet_pdf/SoilMethodologiespdf>

  29. American Society for Testing and Materials (2000) Standard test method for particle-size analysis of soils D 422–63 (1998). 2000 Annual book of ASTM standards 0408:10–17 ASTM, Philadelphia, PA

  30. Susfalk RB, Johnson DW (2002) Ion exchange resin based soil solution lysimeters and snowmelt solution collectors. Commun Soil Sci Plant Anal 33:1261–1275

    Article  CAS  Google Scholar 

  31. Langlois JL, Johnson DW, Mehuys GR (2003) Adsorption and recovery of dissolved organic phosphorus and nitrogen by mixed-bed ion-exchange resin. Soil Sci Soc Am J 67:889–894

    Article  CAS  Google Scholar 

  32. McCoy MW, Gillooly JF (2008) Predicting natural mortality rates of plants and animals. Ecol Letters 11:710–716

    Article  Google Scholar 

  33. Allen AP, Gillooly JF, Brown JH (2005) Linking the global carbon cycle to individual metabolism. Func Ecol 19:202–213

    Article  Google Scholar 

  34. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  35. Clifton-Brown JC, Lewandowski I (2000) Water-use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Ann Bot 86:191–200

    Article  Google Scholar 

  36. Heaton EA, Flavell RB, Mascia PN, Thomas SR, Dohleman FG, Long SP (2008) Herbaceous energy crop development: recent progress and future prospects. Current Opinion Biotechnol 19:202–209

    Article  CAS  Google Scholar 

  37. Khale P, Beuch S, Boelcke B, Leinweber P, Schulten H-R (2001) Cropping of Miscanthus in Central Europe: production and influence on nutrients and soil organic matter. Europ J Agron 15:171–184

    Article  Google Scholar 

  38. Cadoux S, Riche AB, Yates NE, Machet J-M (2011) Nutrient requirements of Miscanthus × giganteus: conclusions from a review of published studies. Biomass Bioenerg. doi:10.1016/j.biombioe.2011.01.015

  39. De Wever H, Swerts M, Mussen S, Merckx R, Vlassak K (2000) Impact of organic amendments on N2O production through denitrification in soil. In: van Ham J, Baede APM, Meyer LA, Ybema R (eds) Non-CO2 Greenhouse Gases: Scientific Understanding. Control and Implementation Kluwer Academic Publishers, Dordrecht, pp 173–178

    Google Scholar 

  40. Hoben JP, Gehl RJ, Millar N, Graces PR, Robertson GP (2011) Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biol 17:1140–1152

    Article  Google Scholar 

  41. Hellebrand HJ, Kern J, Scholz V (2003) Long-term studies on greenhouse gas fluxes during cultivation of energy crops on sand soils. Atmos Environ 37:1635–1644

    Article  CAS  Google Scholar 

  42. Millar N, Robertson GP, Grace PR, Gehl RJ, Hoben JP (2010) Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: an emission reduction protocol for US Midwest agriculture. Mitigation Adaption Strategies for Global Change 15:185–204

    Article  Google Scholar 

  43. Grant RF, Pattey E, Goddard TW, Kryzanowski LM, Puurveen H (2006) Modeling the effects of fertilizer application rate on nitrous oxide emissions. Soil Sci Soc Am J 70:235–248

    Article  CAS  Google Scholar 

  44. Engel R, Liang DL, Wallander R, Bembenek A (2010) Influence of urea fertilizer placement on nitrous oxide production from a silt loam soil. J Environ Qual 39:115–125

    Article  PubMed  CAS  Google Scholar 

  45. Smith KA, Cohen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag 20:255–263

    Article  Google Scholar 

  46. Recous S, Machet JM (1999) Short-term immobilization and crop uptake of fertilizer nitrogen applied to winter wheat: effect of date of application in spring. Plant Soil 206:137–149

    Article  Google Scholar 

  47. Smith KA, Taggart IP, Tsuruta H (1997) Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manag 13:296–304

    Article  Google Scholar 

  48. Parkin TB, Kaspar TC (2006) Nitrous oxide emission from corn–soybean systems in the Midwest. J Environ Qual 35:1496–1506

    Article  PubMed  CAS  Google Scholar 

  49. Baggs EM, Stevenson M, Pihlatie M, Regar A, Cook H, Cadisch G (2003) Nitrous oxide emissions following application of residues and fertilizer under zero and conventional tillage. Plant Soil 254:361–370

    Article  CAS  Google Scholar 

  50. Bouwman AF, Fung I, Matthews E, John J (1993) Global analysis of the potential for N2O production in natural soils. Global Biogeochem Cycles 7:557–597

    Article  CAS  Google Scholar 

  51. Phillips RL, Tanaka DL, Archer DW, Hanson JD (2009) Fertilizer application timing influences greenhouse gas fluxes over a growing season. J Environ Qual 38:1569–1579

    Article  PubMed  CAS  Google Scholar 

  52. IPCC (2006) Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. <http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch11_N2O&CO2.pdf>

  53. Drury CF, Reynolds WD, Tan CS, Welacky TW, Calder W, McLaughlin NB (2006) Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth. Soil Sci Soc Am J 70:570–581

    Article  CAS  Google Scholar 

  54. Mielnick PC, Dugas WA (2000) Soil CO2 flux in a tallgrass prairie. Soil Biol Biochem 32:221–228

    Article  CAS  Google Scholar 

  55. Knapp AK, Conard SL, Blair JM (1998) Determinants of soil CO2 flux from a sub-humid grassland: effect of fire and fire history. Ecol App 8:760–770

    Google Scholar 

  56. Parkin TB, Kaspar TC (2003) Temperature controls on diurnal carbon dioxide flux: implications for estimating soil carbon loss. Soil Sci Soc Am J 67:1763–1772

    Article  CAS  Google Scholar 

  57. Raich JW, Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cycles 9:23–36

    Article  CAS  Google Scholar 

  58. McIsaac GF, Hu X (2004) Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage. Biogeochem 70:251–271

    Article  CAS  Google Scholar 

  59. Mitchell JK, McIsaac GF, Walker SE, Hirschi MC (2000) Nitrate in river and subsurface drainage flows from an East Central Illinois watershed. Trans ASAE 43:337–342

    CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by Department of Energy-funded Sun Grant Herbaceous Feedstock Partnership and the Energy Biosciences Institute. We thank Corey A. Mitchell for analyzing the inorganic N resin lysimeter data and Robert G. Darmody for collecting baseline soil samples and conducting texture analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark B. David.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behnke, G.D., David, M.B. & Voigt, T.B. Greenhouse Gas Emissions, Nitrate Leaching, and Biomass Yields from Production of Miscanthus × giganteus in Illinois, USA. Bioenerg. Res. 5, 801–813 (2012). https://doi.org/10.1007/s12155-012-9191-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9191-5

Keywords

Navigation