Skip to main content
Log in

Genome-Scale Identification of Cell-Wall-Related Genes in Switchgrass through Comparative Genomics and Computational Analyses of Transcriptomic Data

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Large numbers of plant cell-wall (CW)-related genes have been identified or predicted in several plant genomes such as Arabidopsis thaliana, Oryza sativa (rice), and Zea mays (maize), as results of intensive studies of these organisms in the past 2 decades. However, no such gene list has been identified in switchgrass (Panicum virgatum), a key bioenergy crop. Here, we present a computational study for prediction of CW genes in switchgrass using a two-step procedure: (i) homology mapping of all annotated CW genes in the fore-mentioned species to switchgrass, giving rise to a total of 991 genes, and (ii) candidate prediction of CW genes based on switchgrass genes co-expressed with the 991 genes under a large number of experimental conditions. Specifically, our co-expression analyses using the 991 genes as seeds led to the identification of 104 large clusters of co-expressed genes, each referred to as a co-expression module (CEM), covering 830 of the 991 genes plus 823 additional genes that are strongly co-expressed with some of the 104 CEMs. These 1653 genes represent our prediction of CW genes in switchgrass, 112 of which are homologous to predicted CW genes in Arabidopsis. Functional inference of these genes is conducted to derive the possible functional relations among these predicted CW genes. Overall, these data may offer a highly useful information source for cell-wall biologists of switchgrass as well as plants in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13(3):305–312. doi:10.1016/j.pbi.2009.12.009

    Article  CAS  PubMed  Google Scholar 

  2. Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol. doi:10.1016/j.biortech.2014.07.022

    Google Scholar 

  3. Divakara BN, Upadhyaya HD, Wani SP, Gowda CLL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87(3):732–742. doi:10.1016/j.apenergy.2009.07.013

    Article  CAS  Google Scholar 

  4. Konda NM, Shi J, Singh S, Blanch HW, Simmons BA, Klein-Marcuschamer D (2014) Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol Biofuels 7:86. doi:10.1186/1754-6834-7-86

    Article  PubMed Central  PubMed  Google Scholar 

  5. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. doi:10.1126/science.1137016

    Article  CAS  PubMed  Google Scholar 

  6. Kalluri UC, Yin H, Yang X, Davison BH (2014) Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance. Plant Biotechnol J 12(9):1207–1216. doi:10.1111/pbi.12283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. McCann M, Rose J (2010) Blueprints for building plant cell walls. Plant Physiol 153(2):365. doi:10.1104/pp. 110.900324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci U S A 105(2):464–469. doi:10.1073/pnas.0704767105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wu M, Wu Y, Wang M (2006) Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment. Biotechnol Prog 22(4):1012–1024. doi:10.1021/bp050371p

    Article  CAS  PubMed  Google Scholar 

  10. Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I (2011) Genetic improvement of willow for bioenergy and biofuels. J Integr Plant Biol 53(2):151–165. doi:10.1111/j.1744-7909.2010.01015.x

    Article  PubMed  Google Scholar 

  11. Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Biorefin 4(2):209–226

    Article  CAS  Google Scholar 

  12. Parrish DJ, Fike JH (2009) Selecting, establishing, and managing switchgrass (Panicum virgatum) for biofuels. Methods Mol Biol 581:27–40. doi:10.1007/978-1-60761-214-8_2

    Article  PubMed  Google Scholar 

  13. Zhang JY, Lee YC, Torres-Jerez I, Wang M, Yin Y, Chou WC et al (2013) Development of an integrated transcript sequence database and a gene expression atlas for gene discovery and analysis in switchgrass (Panicum virgatum L.). Plant J 74(1):160–173. doi:10.1111/tpj.12104

    Article  CAS  PubMed  Google Scholar 

  14. Xi Y, Ge Y, Wang ZY (2009) Genetic transformation of switchgrass. Methods Mol Biol 581:53–59. doi:10.1007/978-1-60761-214-8_4

    Article  CAS  PubMed  Google Scholar 

  15. Carpita N, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol Biol 47(1–2):1–5

    Article  CAS  PubMed  Google Scholar 

  16. Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45(9):1111–1121. doi:10.1093/pcp/pch151

    Article  CAS  PubMed  Google Scholar 

  17. Penning BW, Hunter CT 3rd, Tayengwa R, Eveland AL, Dugard CK, Olek AT et al (2009) Genetic resources for maize cell wall biology. Plant Physiol 151(4):1703–1728. doi:10.1104/pp. 109.136804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255. doi:10.1126/science.1087447

    Article  CAS  PubMed  Google Scholar 

  19. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2(10):2366–2382. doi:10.1038/nprot.2007.324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42(Database issue):D1182–D1187. doi:10.1093/nar/gkt1016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Li G, Ma Q, Tang H, Paterson AH, Xu Y (2009) QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res 37(15), e101. doi:10.1093/nar/gkp491

    Article  PubMed Central  PubMed  Google Scholar 

  22. Jiao X, Sherman BT, da Huang W, Stephens R, Baseler MW, Lane HC et al (2012) DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28(13):1805–1806. doi:10.1093/bioinformatics/bts251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  24. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205. doi:10.1093/nar/gkt1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Shen H, Mazarei M, Hisano H, Escamilla-Trevino L, Fu C, Pu Y et al (2013) A genomics approach to deciphering lignin biosynthesis in switchgrass. Plant Cell 25(11):4342–4361. doi:10.1105/tpc.113.118828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wang S, Yin Y, Ma Q, Tang X, Hao D, Xu Y (2012) Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis. BMC Plant Biol 12:138. doi:10.1186/1471-2229-12-138

    Article  PubMed Central  PubMed  Google Scholar 

  27. Zhong R, Ye ZH (2012) MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol 53(2):368–380. doi:10.1093/pcp/pcr185

    Article  CAS  PubMed  Google Scholar 

  28. Law JA, Vashisht AA, Wohlschlegel JA, Jacobsen SE (2011) SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV. PLoS Genet 7(7), e1002195. doi:10.1371/journal.pgen.1002195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma 9:559. doi:10.1186/1471-2105-9-559

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation (DEB-0830024 and DBI-0542119) and the DOE BioEnergy Science Center grant (DE-PS02-06ER64304), which is supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science. This work was also supported in part by the Agriculture Experiment Station and the Biochemical Spatiotemporal Network Resource Center (3SP680) of South Dakota State University.

XC and QM participated in the coordination of the paper, carried out or participated all the analyses of transcriptomic data and the comparative genomics framework, and drafted the manuscript; XM participated in framework design. YT provided the transcriptomic data along with relevant data details, XR offered biology guidance in co-expression analysis, and YW and GL proved the TF prediction results. CZ designed the network analysis part. RAD reviewed and edited the paper and assisted in interpretation of data, and YX conceived the study, participated in its design and coordination, and revised the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xu.

Additional information

Xin Chen and Qin Ma contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 2564 kb)

ESM 2

(XLSX 976 kb)

ESM 3

(XLSX 162 kb)

ESM 4

(TXT 57 kb)

ESM 5

(PDF 539 kb)

ESM 6

(PDF 817 kb)

ESM 7

(PDF 694 kb)

ESM 8

(PDF 120 kb)

ESM 9

(PDF 124 kb)

ESM 10

(XLSX 997 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Ma, Q., Rao, X. et al. Genome-Scale Identification of Cell-Wall-Related Genes in Switchgrass through Comparative Genomics and Computational Analyses of Transcriptomic Data. Bioenerg. Res. 9, 172–180 (2016). https://doi.org/10.1007/s12155-015-9674-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9674-2

Keywords

Navigation