Skip to main content

Advertisement

Log in

Fermentation of Dilute Acid Pretreated Populus by Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Consolidated bioprocessing (CBP), which merges enzyme production, biomass hydrolysis, and fermentation into a single step, has the potential to become an efficient and economic strategy for the bioconversion of lignocellulosic feedstocks to transportation fuels or chemicals. In this study, we evaluated wild-type Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis, three thermophilic, cellulolytic, mixed-acid fermenting candidate CBP microorganisms, for their fermentation capabilities using dilute acid pretreated Populus as a model biomass feedstock. Under pH-controlled anaerobic fermentation conditions, each candidate successfully digested a minimum of 75 % of the cellulose from dilute acid pretreated Populus, as indicated by an increase in planktonic cells and end-product metabolites and a concurrent decrease in glucan content. C. thermocellum, which employs a cellulosomal approach to biomass degradation, required approximately 50 h to achieve 75 % cellulose utilization. In contrast, the noncellulosomal, secreted hydrolytic enzyme system of the Caldicellulosiruptor sp. required about 100 h after a significant lag phase to achieve similar results. End-point fermentation conversions for C. thermocellum, C. bescii, and C. obsidiansis were determined to be 0.29, 0.34, and 0.38 g of total metabolites per gram of loaded glucan, respectively. These data provide a starting point for future strain engineering efforts that can serve to improve the biomass fermentation capabilities of these three promising candidate CBP platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SSF:

Simultaneous saccharification and fermentation

CBP:

Consolidated bioprocessing

DA:

Dilute acid pretreatment

HW:

Hot water

HPLC:

High-performance liquid chromatography

ATCC:

American Type Culture Collection

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. doi:10.1126/science.1114736

    Article  CAS  PubMed  Google Scholar 

  2. Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508. doi:10.1126/science.1121416

    Article  CAS  PubMed  Google Scholar 

  3. Wyman CE (2003) Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol Prog 19:254–262. doi:10.1021/bp025654l

    Article  CAS  PubMed  Google Scholar 

  4. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642. doi:10.1007/s00253-005-0229-x

    Article  CAS  PubMed  Google Scholar 

  5. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761. doi:10.1038/nbt1316

    Article  CAS  PubMed  Google Scholar 

  6. Hisano H, Nandakumar R, Wang ZY (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313. doi:10.1007/s11627-009-9219-5

    Article  CAS  Google Scholar 

  7. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481. doi:10.1016/j.biotechadv.2006.03.003

    Article  CAS  Google Scholar 

  8. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087. doi:10.1002/bit.24370

    Article  CAS  PubMed  Google Scholar 

  9. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi:10.1128/mmbr.66.4.739.2002

  10. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583. doi:10.1016/j.copbio.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  11. Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803. doi:10.1021/bp990107u

    Article  CAS  PubMed  Google Scholar 

  12. Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405. doi:10.1016/j.copbio.2011.11.026

    Article  CAS  PubMed  Google Scholar 

  13. Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38(3):393–448. doi:10.1111/1574-6976.12044

    Article  CAS  PubMed  Google Scholar 

  14. Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR (2009) Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4, e5271. doi:10.1371/journal.pone.0005271

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shao XJ, Jin MJ, Guseva A, Liu CG, Balan V, Hogsett D, Dale BE, Lynd L (2011) Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Bioresour Technol 102:8040–8045. doi:10.1016/j.biortech.2011.05.021

    Article  CAS  PubMed  Google Scholar 

  16. Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MWW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217. doi:10.1016/j.copbio.2008.04.007

    Article  CAS  PubMed  Google Scholar 

  17. Wilson CM, Yang S, Rodriguez M Jr, Ma Q, Johnson CM, Dice L, Xu Y, Brown SD (2013) Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress. Biotechnol Biofuels 6(1):131. doi:10.1186/1754-6834-6-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124. doi:10.1128/mmbr.69.1.124-154.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294. doi:10.1128/aem.00646-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lynd LR, Grethlein HE, Wolkin RH (1989) Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl Environ Microbiol 55:3131–3139

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu CX, Mielenz JR, Xiao XR, Ge YX, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang ZY (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A A108:3803–3808. doi:10.1073/pnas.1100310108

    Article  Google Scholar 

  22. Yee KL, Rodriguez M, Thompson OA, Fu CX, Wang ZY, Davison BH, Mielenz JR (2014) Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain. Biotechnol Biofuels 7:75. doi:10.1186/1754-6834-7-75

    Article  PubMed  PubMed Central  Google Scholar 

  23. Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin YB, Xu Y, Kataeva I, Poole FL, Adams MWW, Hamilton-Brehm SD, Elkins JG, Larimer FW, Land ML, Hauser LJ, Cottingham RW, Hettich RL, Kelly RM (2012) Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J Bacteriol 194:4015–4028. doi:10.1128/jb.00266-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Svetlitchnyi VA, Kensch O, Falkenhan DA, Korseska SG, Lippert N, Prinz M, Sassi J, Schickor A, Curvers S (2013) Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnol Biofuels 6(1):31. doi:10.1186/1754-6834-6-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ivanova G, Rakhely G, Kovacs KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrog Energy 34:3659–3670. doi:10.1016/j.ijhydene.2009.02.082

    Article  CAS  Google Scholar 

  26. Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valoriz 1:21–39. doi:10.1007/s12649-009-9001-2

    Article  CAS  Google Scholar 

  27. de Vrije T, Bakker RR, Budde MAW, Lai MH, Mars AE, Claassen PAM (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12. doi:10.1186/1754-6834-2-12

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zeidan AA, van Niel EWJ (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int J Hydrog Energy 35:1128–1137. doi:10.1016/j.ijhydene.2009.11.082

    Article  CAS  Google Scholar 

  29. Chung D, Farkas J, Huddleston JR, Olivar E, Westpheling J (2012) Methylation by a unique alpha-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725. PLoS One 7(8):e43844. doi:10.1371/journal.pone.0043844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chung D, Cha M, Farkas J, Westpheling J (2013) Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS One 8(5):e62881. doi:10.1371/journal.pone.0062881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chung DW, Farkas J, Westpheling J (2013) Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuels 6(1):82. doi:10.1186/1754-6834-6-82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cha M, Chung DW, Elkins JG, Guss AM, Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6(1):85. doi:10.1186/1754-6834-6-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A A111:8931–8936. doi:10.1073/pnas.1402210111

    Article  Google Scholar 

  34. Lochner A, Giannone RJ, Keller M, Antranikian G, Graham DE, Hettich RL (2011) Label-free quantitative proteomics for the extremely thermophilic bacterium Caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass. J Proteome Res 10:5302–5314. doi:10.1021/pr200536j

    Article  CAS  PubMed  Google Scholar 

  35. Lochner A, Giannone RJ, Rodriguez M, Shah MB, Mielenz JR, Keller M, Antranikian G, Graham DE, Hettich RL (2011) Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl Environ Microbiol 77:4042–4054. doi:10.1128/aem.02811-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamilton-Brehm SD, Mosher JJ, Vishnivetskaya T, Podar M, Carroll S, Allman S, Phelps TJ, Keller M, Elkins JG (2010) Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl Environ Microbiol 76:1014–1020. doi:10.1128/aem.01903-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MWW (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe Anaerocellum thermophilum DSM 6725. Appl Environ Microbiol 75:4762–4769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Basen M, Rhaesa AM, Kataeva I, Prybol CJ, Scott IM, Poole FL, Adams MWW (2014) Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Bioresour Technol 152:384–392. doi:10.1016/j.biortech.2013.11.024

    Article  CAS  PubMed  Google Scholar 

  39. Yee KL, Rodriguez M, Tschaplinski TJ, Engle NL, Martin MZ, Fu CX, Wang ZY, Hamilton-Brehm SD, Mielenz JR (2012) Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach. Biotechnol Biofuels 5(1):81. doi:10.1186/1754-6834-5-81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilson CM, Rodriguez M, Johnson CM, Martin SL, Chu TM, Wolfinger RD, Hauser LJ, Land ML, Klingeman DM, Syed MH, Ragauskas AJ, Tschaplinski TJ, Mielenz JR, Brown SD (2013) Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. Biotechnol Biofuels 6(1):179. doi:10.1186/1754-6834-6-179

    Article  PubMed  PubMed Central  Google Scholar 

  41. Linville JL, Rodriguez M Jr, Mielenz JR, Cox CD (2013) Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum. Bioresour Technol 147:605–613. doi:10.1016/j.biortech.2013.08.086

    Article  CAS  PubMed  Google Scholar 

  42. Kataeva I, Foston MB, Yang SJ, Pattathil S, Biswal AK, Poole FL, Basen M, Rhaesa AM, Thomas TP, Azadi P, Olman V, Saffold TD, Mohler KE, Lewis DL, Doeppke C, Zeng YN, Tschaplinski TJ, York WS, Davis M, Mohnen D, Xu Y, Ragauskas AJ, Ding SY, Kelly RM, Hahn MG, Adams MWW (2013) Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ Sci 6:2186–2195. doi:10.1039/c3ee40932e

    Article  CAS  Google Scholar 

  43. Holwerda EK, Thorne PG, Olson DG, Amador-Noguez D, Engle NL, Tschaplinski TJ, P van Diijken J, Lynd LR (2014) The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. Biotechnol Biofuels 7:155. doi:10.1186/s13068-014-0155-1

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ellis LD, Holwerda EK, Hogsett D, Rogers S, Shao X, Tschaplinski T, Thorne P, Lynd LR (2012) Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresour Technol 103:293–299. doi:10.1016/j.biortech.2011.09.128

    Article  CAS  PubMed  Google Scholar 

  45. Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339. doi:10.1021/bp0702018

    Article  CAS  PubMed  Google Scholar 

  46. Kumar R, Wyman CE (2009) Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol Prog 25:807–819. doi:10.1002/btpr.153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Bioenergy Science Center (BESC) which is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The pretreatment of the Populus sample was performed by Robert Sykes and others at the National Renewable Energy Laboratory. ORNL is managed by UT-Battelle, LLC, Oak Ridge, TN, USA, for the DOE under contract DE-AC05-00OR22725.

Conflict of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

KLY planned the work, conducted the experiments, and wrote the manuscript. MR Jr helped conduct experiments, assisted in data acquisition/analysis, and edited the manuscript. CYH helped conduct experiments. SDHB helped with enumeration of planktonic cells and edit the manuscript. OAT edited the manuscript. JRM helped plan the experiments and edited the manuscript. BHD and JGE helped plan and edit the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Davison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figures S1

Time course profile of the biomass residual glucan and xylan content for C. thermocellum on dilute acid pretreated Populus (5 g/L dry biomass). (PPTX 59 kb)

Figure S2

Time course profile of the biomass residual glucan and xylan content for C. obsidiansis on dilute acid pretreated Populus (5 g/L dry biomass). (PPTX 57 kb)

Figure S3

Time course profile of the biomass residual glucan and xylan content for C. bescii on dilute acid pretreated Populus (5 g/L dry biomass). (PPTX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yee, K.L., Rodriguez, M., Hamilton, C.Y. et al. Fermentation of Dilute Acid Pretreated Populus by Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis . Bioenerg. Res. 8, 1014–1021 (2015). https://doi.org/10.1007/s12155-015-9659-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9659-1

Keywords

Navigation