Skip to main content
Log in

Comparative Analysis of the Fatty Acid Composition of Microalgae Obtained by Different Oil Extraction Methods and Direct Biomass Transesterification

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

One of the main challenges for the successful production and use of microalgae for biodiesel production is to obtain a satisfactory level of fatty acid methyl esters (FAME). The aims of this study are to identify the best method of lipid extraction and provide high FAME levels and to evaluate their fatty acid profiles. Six lipid extraction methodologies in three microalgae species were tested in comparison with the direct transesterification (DT) of microalgal biomass method. The choice of extraction method affected both the oily extract yield and the FAME composition of the microalgae and consequently may affect the properties of biodiesel. The efficiency of different lipid extraction methods is affected by the solvent polarity, which extracts different target compounds from lipid matrix. Dichloromethane/methanol extraction and Folch extraction produced the largest oil extract yields, but extraction with hexane/ethanol resulted in the best ester profile and levels. Performing DT reduces the volume of extractor solvent, the time and cost of FA composition analysis, as well as, presents less steps for fatty acid quantification. DT provided biomass FAME levels of 50.2, 636.4, and 258.2 mg.g−1 in Nannochlorophisis oculata, Chaetoceros muelleri, and Chlorella sp., respectively. On the basis of an analysis of the fatty acids profiles of different species, C. muelleri is a promising microalga for biodiesel production. Depending on the extraction method, Chlorella sp. and N. oculata can be considered as an alternative in obtaining arachidonic (Aa) and eicosapentaenoic (EPA) acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Aa:

Arachidonic acid (C20:4 ω6)

ANP:

Brazilian National Agency for Petroleum Natural Gas and Biofuels

CFPP:

Cold filter plugging point

CN:

Cetane number

DCM:

Dichloromethane

DT:

Direct transesterification

CO2 :

Carbon dioxide

EPA:

Eicosapentaenoic acid (C20:5 ω3)

GC-HRMS:

Gas Chromatography -High resolution mass spectrometry

FA:

Fatty acids

FAME:

Fatty acid methyl esters

FID:

Flame ionization detector

PAR:

Photosynthetically active radiation

PUFA:

Polyunsaturated fatty acids

SFA:

Saturated fatty acids

SV:

Saponification value

TAG:

Triglycerides

USFA:

Unsaturated fatty acids

References

  1. Suarez PAZ, Santos ALF, Rodrigues JP, Alves MB (2009) Biocombustíveis a partir de óleos e gorduras: desafios tecnológicos para viabilizá-los. Quim Nova 32:768–775

    Article  CAS  Google Scholar 

  2. Dermibas A, Dermibas MF (2010) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52:163–170

    Google Scholar 

  3. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Proces Technol 86:1059–1070

    Article  CAS  Google Scholar 

  4. Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  5. Cheng HC, Du TB, Pi HC, Jang SM, Lin HY, Lee HT (2011) Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol 102:10151–10153

    Article  CAS  PubMed  Google Scholar 

  6. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparisons of several methods for effective extraction from microalgae. Bioresour Technol 101:75–77

    Article  Google Scholar 

  7. Ruiz RJ, Belarbi EH, Sánchez JLG, Alonso DL (1998) Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnol Tech 12:689–691

    Article  Google Scholar 

  8. Lewis T, Nichols PD, Mcmeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Meth 43:107–116

    Article  CAS  Google Scholar 

  9. Armenta RE, Scott SD, Burja AM, Radianingtyas H, Barrow CJ (2009) Optimization of fatty acid determination in selected fish and microalgal oils. Chromatographia 70:629–636

    Article  CAS  Google Scholar 

  10. Griffiths M, Van Hill RP, Harrison STL (2010) Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids 45:1053–1060

    Article  CAS  PubMed  Google Scholar 

  11. Hartman L, Lago RAC (1973) Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 22:475–476

    CAS  PubMed  Google Scholar 

  12. Lepage G, Roy C (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 12:1391–1396

    Google Scholar 

  13. Carrapiso AI, García C (2000) Development in lipid analysis: some new extraction techniques and in situ transesterification. Lipids 35:1167–1177

    Article  CAS  PubMed  Google Scholar 

  14. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Charley MH (eds) Culture of marine invertabrate animals. Plenum, New York, pp 29–60

    Chapter  Google Scholar 

  15. Rippka R, Derulles J, Waterbury JB, Herdman M, Stainer RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  16. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animals tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  17. Bligh EG, Dyer WM (1959) A rapid method of lipid extraction and purification. Can J Biochem Phys 37:911–917

    CAS  Google Scholar 

  18. James CD (1995) Analytical chemistry of food. Blackie Academic and Professional, London

    Book  Google Scholar 

  19. Menezes RS, Leles MIG, Soares AT, Franco PIBM, Antoniosi Filho NR, Sant'Anna CL, Vieira AAH (2013) Avaliação da potencialidade de microalgas dulcícolas como fonte de matéria-prima graxa para a produção de biodiesel. Quim Nova 36:10–15

    Article  CAS  Google Scholar 

  20. Soares AT, Silva BF, Fialho LL, Pequeno MAG, Vieira AAH, Souza AG, Antoniosi Filho NR (2013) Chromatographic characterization of triacylglycerides and fatty acid methyl esters in microalgae oils for biodiesel production. J Renew Sustain Energy 5:1–8

    Google Scholar 

  21. Dunstan GA, Brown MR, Volkman JK (2005) Cryptophyceae and rhodophyceae: chemataxonomy, phylogeny and application. Phytochemistry 66:2557–2570

    Article  CAS  PubMed  Google Scholar 

  22. Espinoza EV, Nuñez RM, Cebrero FN (2002) Protein, carbohydrate, lipid and chlorophyll a content in Isochrysis aff. galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium. Aquacult Eng 25:207–216

    Article  Google Scholar 

  23. Otero A, Fábregas J (1997) Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates. Aquaculture 159:111–123

    Article  CAS  Google Scholar 

  24. Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23:67–73

    Article  CAS  Google Scholar 

  25. Tang H, Abunasser N, Garcia MED, Chen M, Ng KYS, Salley SO (2010) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energy 88:3324–3330

    Article  Google Scholar 

  26. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:71–74

    Article  Google Scholar 

  27. Zhu CJ, Lee YK, Chao TM (1997) Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J Appl Phycol 9:451–457

    Article  CAS  Google Scholar 

  28. Nascimento IA, Marques SSI, Cabanelas ITD, Pereira AS, Druzian JI, Souza CO, Vich DV, Carvalho GC, Nascimento MA (2013) Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenerg Res 6:1–13

    Article  CAS  Google Scholar 

  29. Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  PubMed  Google Scholar 

  30. Streit NM, Canterle LP, Canto MW, Hecktheuer LHH (2005) As clorofilas. Ciênc Rural 35:748–755

    Article  CAS  Google Scholar 

  31. Zhukova NV, Aizdaicher NA (1995) Fatty acid composition of 15 species of marine microalgae. Phytochemistry 39:351–356

    Article  CAS  Google Scholar 

  32. Vega JMP, Roa MAC, Saavedra MPS, Ramírez DT, Dávalos CR (2010) Effect of culture medium and nutrient concentration on fatty acid content of Chaetoceros muelleri. Rev Lat Am Biotechnol Ambiental Algal 1:6–15

    Google Scholar 

  33. Kiss MRM, Ivanov AG, Modla S, Czymmek K, Hüner NPA, Priscu JC (2008) Identity and physiology of new psychrophilic eukaryotic green alga, Chlorella sp. strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles 12:701–711

    Article  Google Scholar 

  34. European Committee For Standardization, EN 14214 (2008) Automotive fuels—fatty acid methyl esters (FAME) for diesel engines—requirements and test methods. (Supersedes EN 14214:2003)

  35. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), Resolução Nº 14 de 11 maio 2012

Download references

Acknowledgments

The authors would like to express their appreciation to the Ministry of Science Technology and Innovation (MCTI) for financial support provided through FINEP (Agreement No. 01.10.0457.00) and CNPq (Case No. 574796/2008-8), to CAPES for a scholarship awarded to Aline Terra Soares, to CNPq for a research productivity scholarship awarded to Nelson Roberto Antoniosi Filho, (Case No. 309832/2010-1) and to FUNAPE for management of financial resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Roberto Antoniosi Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, A.T., da Costa, D.C., Silva, B.F. et al. Comparative Analysis of the Fatty Acid Composition of Microalgae Obtained by Different Oil Extraction Methods and Direct Biomass Transesterification. Bioenerg. Res. 7, 1035–1044 (2014). https://doi.org/10.1007/s12155-014-9446-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9446-4

Keywords

Navigation