Skip to main content

Advertisement

Log in

Effects of Management on Economic Profitability of Forest Biomass Production and Carbon Neutrality of Bioenergy Use in Norway Spruce Stands Under the Changing Climate

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

We analyzed the effects of management on the economic profitability of forest biomass production and carbon neutrality of bioenergy use in Norway spruce (Picea abies L. Karst) stands under the changing climate. We employed a forest ecosystem model and life cycle assessment tool. In particular, we studied the effects of thinning, nitrogen fertilization, and rotation length on: (1) the production of timber and energy biomass, and its economic profitability (net present value), (2) carbon stock in the forest ecosystem and carbon balance in forestry, and (3) carbon dioxide (CO2) emissions from the use of biomass in energy production. Results showed that the current Finnish baseline management with and without nitrogen fertilization resulted in the highest mean annual timber production and net present value (NPV) for long rotations (60 to 80 years), regardless of climate scenario. Mean annual production of energy biomass was enhanced by increasing stocking by 20–30 % compared to the baseline management, and/or use of nitrogen fertilization. Such management gave lower CO2 emissions per unit of energy compared to the baseline management, as the carbon stock in the forest ecosystem and the carbon balance in forestry increased. Overall, the carbon neutrality and net present value were, on average, the highest in the baseline management or with a 20 % increase in stocking, with nitrogen fertilization and 60- to 80-year rotation lengths, regardless of the climate applied. However, it was not possible to simultaneously maximize the NPV of forest biomass production and the carbon neutrality of bioenergy use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jylhä K, Ruosteenoja K, Räisänen J et al (2009) The changing climate in Finland: estimates for adaptation studies. ACCLIM project report 2009 (in Finnish with extended abstract in English). Finnish Meteorological Institute, Reports, 4, 102

  2. Garcia-Gonzalo J, Peltola H, Gerendiain AZ, Kellomäki S (2007) Impacts of forest landscape structure and management on timber production and carbon stocks in the boreal forest ecosystem under changing climate. For Ecol Manage 241:243–257

    Article  Google Scholar 

  3. Alam A, Kilpeläinen A, Kellomäki S (2008) Impacts of thinning on growth, timber production and carbon stocks in Finland under changing climate. Scand J Forest Res 23:501–512

    Article  Google Scholar 

  4. Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Phil Trans R Soc B 363:2341–2351

    Article  PubMed Central  PubMed  Google Scholar 

  5. Poudel BC, Sathre R, Gustavsson L, Bergh J, Lundström A, Hyvönen R (2011) Effects of climate change on biomass production and substitution in North-Central Sweden. Biomass Bioenerg 35:4340–4355

    Article  Google Scholar 

  6. Poudel BC, Sathre R, Bergh J, Gustavsson L, Lundström A, Hyvönen R (2012) Potential effects of intensive forestry on biomass production and total carbon balance in North-Central Sweden. Environ Sci Pol 15:106–124

    Article  Google Scholar 

  7. Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2001) Which rotation length is favourable to carbon sequestration? Can J For Res 31:2004–2013

    Article  Google Scholar 

  8. Briceno-Elizondo E, Garcia-Gonzalo J, Peltola H, Matala J, Kellomäki S (2006) Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. For Ecol Manag 232(1–3):152–167

    Article  Google Scholar 

  9. Garcia-Gonzalo J, Peltola H, Briceno-Elizondo E, Kellomäki S (2007) Changed thinning regimes may increase carbon stock under climate change: a case study from a Finnish boreal forest. Clim Change 81(3–4):431–454

    Article  CAS  Google Scholar 

  10. Matala J, Ojansuu R, Peltola H, Raitio H, Kellomäki S (2006) Modelling the response of tree growth to temperature and CO2 elevation as related to the fertility and current temperature sum of a site. Ecol Model 199:39–52

    Article  Google Scholar 

  11. Matala J, Kärkkäinen L, Härkönen K, Kellomäki S, Nuutinen T (2009) Carbon sequestration in the growing stock of trees in Finland under different cutting and climate scenarios. Eur J For Res 128:493–504

    Article  Google Scholar 

  12. Routa J (2011c) Effects of forest management on sustainability of integrated timber and energy wood production—scenario analysis based on ecosystem model simulations. Dissertation Forestales 123

  13. Hyvönen R, Ågren GI, Linder S et al (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  PubMed  Google Scholar 

  14. Alam A, Kilpelainen A, Kellomäki S (2012) Impacts of initial stand density and thinning regimes on energy wood production and management-related CO2 emissions in boreal ecosystems. Eur J For Res 131:655–667

    Article  CAS  Google Scholar 

  15. Eriksson E, Gillespie AR, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J (2007) Integrated carbon analysis of forest management practices and wood substitution. Can J For Res 37:671–681

    Article  CAS  Google Scholar 

  16. Routa J, Kellomäki S, Kilpeläinen A, Peltola H, Strandman H (2011) Effects of forest management on the carbon dioxide emissions of wood energy in integrated production of timber and energy biomass. Glob Change Biol Bioenerg 3:483–497

    Article  Google Scholar 

  17. Routa J, Kellomäki S, Peltola H (2012) Impacts of intensive management and landscape structure on timber and energy wood production and net CO2 emissions from energy wood use of Norway Spruce. Bioenerg Res 5:106–123

    Article  Google Scholar 

  18. Sathre R, Gustavsson L (2011) Time-dependent climate benefits of using forest residues to substitute fossil fuels. Biomass Bioenerg 35:2506–2516

    Article  Google Scholar 

  19. Metinfo- forest information services, Finnish Forest Research Institute. 2011. (Internet site) Available at: http://www.metla.fi/metinfo/tilasto/index.htm (In Finnish)

  20. Ylitalo E (2012) Puun energiakäyttö 2011 (The use of wood in energy production 2011). Metsätilastotiedote (Official Statistics of Finland, Finnish Forest Research Institute). Volume 16, 7 p. (In Finnish)

  21. The Intergovernmental Panel on Climate Change (IPCC) (2000) Land use, land-use change, and forestry. A special report of the IPCC. Cambridge University Press, UK

    Google Scholar 

  22. Schlamadinger B, Spitzer J, Kohlmaier GH, Lüdeke M (1995) Carbon balance of bioenergy from logging residues. Biomass Bioenerg 8:221–234

    Article  Google Scholar 

  23. Melillo JM, Reilly JM, Kicklighter DW (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399

    Article  CAS  PubMed  Google Scholar 

  24. Melin Y, Petersson H, Egnell G (2010) Assessing carbon balance trade-offs between bioenergy and carbon sequestration of stumps at varying time scales and harvest intensities. Fort Ecol Manag 260:536–542

    Article  Google Scholar 

  25. Repo A, Tuomi M, Liski J (2011) Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. Glob Chang Biol Bioenerg 3:107–115

    Article  CAS  Google Scholar 

  26. Searchinger T, Heimlich R, Houghton RA (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  CAS  PubMed  Google Scholar 

  27. Ter-Mikaelian M, McKechnie J, Colombo S, Chen J, MacLean H (2011) The carbon neutrality assumption for forest bioenergy: a case study for Northwestern Ontario. For Chron 87:644–652

    Article  Google Scholar 

  28. Helin T, Sokka L, Soimakallio S, Pingoud K, Pajula T (2012) Approaches for inclusion of forest carbon cycle in life cycle assessment—a review. Glob Chang Biol Bioenerg. doi:10.1111/gcbb.12016

    Google Scholar 

  29. Mitchell SR, Harmon ME, O’Connell KEB (2012) Carbon debt and carbon sequestration parity in forest bioenergy production. Glob Chang Biol Bioenerg. doi:10.1111/j.1757-1707.2012.01173.x

    Google Scholar 

  30. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Article  CAS  PubMed  Google Scholar 

  31. Kilpeläinen A, Alam A, Strandman H, Kellomäki S (2011) Life cycle assessment tool for estimating net CO2 exchange of forest production. Glob Chang Biol Bioenerg 3:461–471

    Article  Google Scholar 

  32. Kellomäki S, Strandman H, Nuutinen T, Peltola H, Korhonen KT, Väisänen H (2005) Adaptation of forest ecosystems, forest and forestry to climate change. FINADAPT. Working Paper 4. Finnish Environment Institute Mimeographs 334, Helsinki

  33. Routa J, Kellomäki S, Peltola H, Asikainen A (2011) Impacts of thinning and fertilization on timber and energy wood production in Norway spruce and Scots pine: scenario analyses based on ecosystem model simulations. For 84:159–175

    Google Scholar 

  34. Hynynen J, Ojansuu R, Hökkä H, Siipilehto J, Salminen H, Haapala P (2002) Models for predicting stand development in MELA System. Finnish Forest Research Institute, Research Papers 835,116 pp

  35. Mäkipää R, Karjalainen T, Pussinen A, Kukkola M, Kellomäki S, Mälkönen E (1998) Applicability of a forest simulation model for estimating effects of nitrogen deposition on a forest ecosystem: test of the validity of a gap-type model. For Ecol Manage 108:239–250

    Article  Google Scholar 

  36. Järvinen O, Vänni T (1994) Ministry of the water and environment mimeograph 579: 66 (In Finnish)

  37. Recommendations for Forest Management in Finland (2006) Forestry Development Centre Tapio, Metsäkustannus Oy, pp. 100 (in Finnish)

  38. Venäläinen A, Tuomenvirta H, Pirinen P, Drebs A (2005) A Basic Finnish climate data set 1961–2000—description and illustrations. Reports of the Finnish Meteorological Institute, 5, 27 p

  39. Aalto J, Pirinen P, Heikkinen J, Venäläinen A (2012) Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models. Theor Appl Clim. doi:10.1007/s00704-012-0716-9

    Google Scholar 

  40. Meehl GA, Covey C, Delworth T et al (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  41. Nakićenović N, Alcamo J, Davis G et al (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, U.K., 599 pp. Available online at: http://www.grida.no/climate/ipcc/emission/index.htm

  42. NOAA/ESRL, (2012). Trends in atmospheric carbon dioxide. Thomas Conway and Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) (Accessed: 27th Nov 2012)

  43. Metinfo—Forest information services, Finnish Forest Research Institute (2012) Available at: http://www.metla.fi/metinfo/tilasto/ (In Finnish) Accessed 19 Jan 2012

  44. Routa J, Kellomäki S, Strandman H, Bergh J, Pulkkinen P, Peltola H (2013) The timber and energy biomass potential on intensively managed cloned Norway spruce stands. GCB Bioenergy 5:43–52

    Article  Google Scholar 

  45. Nurmi J (1993) Small-sized trees above ground biomass heating value. Pienikokoisten puiden maanpäällisen biomassan lämpöarvo. Helsinki. Acta For Fenn 236:30, In Finnish

    Google Scholar 

  46. Nurmi J (1997) Heating values of mature trees. Acta For Fenn 256:28

    Google Scholar 

  47. Statistics Finland (2005) Polttoaineluokitus. Available at: http://www.stat.fi/tup/khkinv/polttoaineluokitus.html. (In Finnish). (Accessed 1 June 2011)

  48. Kukkola M, Saramäki J (1983) Growth response in repeatedly fertilized pine and spruce stands on mineral soils. Commun Inst For Fenn 114:1–55

    Google Scholar 

  49. Routa J, Kellomäki S, Strandman H, Bergh J, Pulkkinen P, Peltola H (2012b) The timber and energy biomass potential of intensively managed cloned Norway spruce stands. Glob Chang Biol Bioenerg 5(1):43–52

    Google Scholar 

  50. Kuusinen M, Ilvesniemi H (eds) (2008) Environmental effects on energywood harvesting, study report. Forestry Development Centre Tapio and Finnish Forest Research Institute publications, pp. 74 (in Finnish)

  51. Jacobson S, Kukkola M, Mälkönen E, Tveite B (2000) Impact of whole-tree harvesting and compensatory fertilization on growth of coniferous thinning stands. For Ecol Manage 129:41–51

    Article  Google Scholar 

  52. Äijälä O, Kuusinen M, Koistinen A. (edit) (2010) Recommendations for Management and Harvesting of Energy Wood. (in Finnish: Hyvän metsänhoidon suositukset energiapuun korjuuseen ja kasvatukseen), Forestry Development Centre Tapio publications, pp. 32. (in Finnish)

  53. Seely B, Welham C, Kimmins H (2002) Carbon sequestration in a boreal forest ecosystem: results from the ecosystem simulation model, FORECAST. For Ecol Manage 169:123–135

    Article  Google Scholar 

  54. Pohjola J, Valsta L (2007) Carbon credits and management of Scots pine and Norway spruce stands in Finland. For Policy Econ 9:789–798

    Article  Google Scholar 

  55. Marland G, Schlamadinger B (1997) Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis. Biomass Bioenerg 13:389–397

    Article  CAS  Google Scholar 

  56. Sathre R, Gustavsson L, Bergh J (2010) Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization. Biomass Bioenerg 34:572–581

    Article  CAS  Google Scholar 

  57. Seppälä R, Buck A, Katila P (eds) (2009) Adaptation of forests and people to climate change—a global assessment report. IUFRO World Series Volume 22. Helsinki. 224 p

  58. Peltola H, Ikonen V-P, Gregow H, Strandman H, Kilpeläinen A, Venäläinen A, Kellomäki S (2010) Impacts of climate change on timber production and regional risks of wind-induced damage to forests in Finland. For Ecol Manage 260:833–845

    Article  Google Scholar 

  59. Jönsson AM, Appelberg G, Harding S, Bärring L (2009) Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Glob Chang Biol Bioenerg 15:486–499

    Article  Google Scholar 

  60. Jönsson A-M, Bärring L (2011) Future climate impact on spruce bark beetle life-cycle in relation to uncertainties in regional climate model data ensembles. Tellus A 63(1):158–173

    Article  Google Scholar 

Download references

Acknowledgments

This work was mainly financed through the Graduate School in Forest Sciences (GSForest), University of Eastern Finland (UEF), School of Forest Sciences. The work is also related to the ongoing consortium projects: (1) adaptation of forest management to climate change: uncertainties, impacts, and risks to forests and forestry in Finland (ADAPT) (UEF and Finnish Meteorological Institute (FMI), core funding by Academy of Finland); (2) sustainable bioenergy, climate change, and health (SUBI) (UEF strategic funding); and (3) wood-based energy systems from Nordic forests (ENERWOODS) (Nordic Energy Research, UEF and Finnish Environmental Institute participants). The FMI is also acknowledged for providing the current climate and A2 climate change scenarios for this work (especially Kimmo Ruosteenoja). Furthermore, Ari Venäläinen (FMI) is thanked for helpful comments for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piritta Pyörälä.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyörälä, P., Peltola, H., Strandman, H. et al. Effects of Management on Economic Profitability of Forest Biomass Production and Carbon Neutrality of Bioenergy Use in Norway Spruce Stands Under the Changing Climate. Bioenerg. Res. 7, 279–294 (2014). https://doi.org/10.1007/s12155-013-9372-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9372-x

Keywords

Navigation