Skip to main content

Advertisement

Log in

Impacts of initial stand density and thinning regimes on energy wood production and management-related CO2 emissions in boreal ecosystems

  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

An ecosystem model (Sima) was utilised to investigate the impact of forest management (by changing both the initial stand density and basal area thinning thresholds from current recommendations) on energy wood production (at energy wood thinning and final felling) and management-related carbon dioxide (CO2) emissions for the energy wood production in Finnish boreal conditions (62°39′ N, 29°37′ E). The simultaneous effects of energy wood, timber and C stocks in the forest ecosystem (live and dead biomass) were also assessed. The analyses were carried out at stand level during a rotation period of 80 years for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.) growing in different fertility sites. Generally, the results showed that decreased basal area thinning thresholds, compared with current thinning, reduced energy wood (logging residues) and timber production, as well as carbon stocks in the forest ecosystem. Conversely, increased thinning thresholds increased energy wood production (ca. 1–27%) at both energy wood thinning and final felling and reduced CO2 emissions (ca. 2–6%) related to the production chain (e.g. management operations), depending on the thinning threshold levels, initial stand density, species and site. Increased thinning thresholds also enhanced timber production and carbon stocks in the forest ecosystem. Additionally, increased initial stand density enhanced energy wood production for energy wood thinning for both species, but this reduced energy wood production at final felling for Scots pine and Norway spruce. This study concluded that increases in both initial stand density and thinning thresholds, compared with the current level, could be useful in energy wood, timber and carbon stocks enhancement, as well as reducing management-related CO2 emissions for energy wood production. Only 2.4–3.3% of input of the produced energy (energy wood) was required during the whole production chain, depending on the management regime, species and sites. However, a comprehensive substitution analysis of wood-based energy, in respect to environmental benefits, would also require the inclusion of CO2 emissions related to ecosystem processes (e.g. decomposition).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahtikoski A, Heikkilä J, Aleniusa V, Siren M (2008) Economic viability of utilizing biomass energy from young stands—the case of Finland. Biomass Bioenergy 32:988–996

    Article  Google Scholar 

  • Äijälä O, Kuusinen M, Koistinen A (2010) Hyvän metsänhoidon suositukset energiapuun korjuuseen ja kasvatukseen (Forest management recommendation for energy wood production and harvesting). Metsätalouden kehittämiskeskus Tapion julkaiseja, 31 pp (in Finnish)

  • Alam A, Kilpeläinen A, Kellomäki S (2008) Impact of thinning on growth, timber production and carbon stocks in Finland under changing climate. Scand J For Res 23:501–512

    Article  Google Scholar 

  • Alam A, Kilpeläinen A, Kellomäki S (2010) Potential timber and energy wood production and carbon stocks in Finland under varying thinning regimes and climate scenarios. Bioenergy Res 3:362–372

    Article  Google Scholar 

  • Berg S, Karjalainen T (2003) Comparison of greenhouse gas emissions from forest operations in Finland and Sweden. Forestry 76:3271–3284

    Article  Google Scholar 

  • Briceño-Elizondo E, Garcia-Gonzalo J, Peltola H, Kellomäki S (2006) Carbon stocks and timber yield in two boreal forest ecosystems under current and changing climatic conditions subjected to varying management regimes. Environ Sci Policy 9:237–252

    Article  Google Scholar 

  • Bugmann H, Fischlin A, Kienast F (1996) Model convergence and state variable update in forest gap models. Ecol Modell 89:197–208

    Article  Google Scholar 

  • Cajander AK (1949) Metsätyypit ja niiden merkitys (Forest types and their importance). Acta Forest Fenn 56:5–69 (in Finnish)

    Google Scholar 

  • Eriksson E, Gillespie AR, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J (2007) Integrated carbon analysis of forest management practices and wood substitution. Can J For Res 37:671–681

    Article  CAS  Google Scholar 

  • Forsberg G (2000) Biomass energy transport analysis of bioenergy transport chains using life cycle inventory method. Biomass Bioenergy 19:17–30

    Article  CAS  Google Scholar 

  • Garcia-Gonzalo J, Peltola H, Briceño-Elizondo E, Kellomäki S (2007) Changed thinning regimes may increase carbon stock under climate change: a case study from a Finnish boreal forest. Clim Change 81:431–454

    Article  CAS  Google Scholar 

  • Gasol CM, Gabarrell X, Anton A, Rigola M, Carrasco J, Ciria P, Rieradevall J (2009) LCA of poplar bioenergy system compared with Brassica carinata energy crop and natural gas in regional scenario. Biomass Bioenergy 33:119–129

    Article  CAS  Google Scholar 

  • Hakkila P (1991) Hakkuupoistuman latvusmassa (Harvesting of logging residues). Folia Forestalia 773:24 pp

    Google Scholar 

  • Hakkila P (2004) Developing technology for large-scale production of forest chips. Wood energy technology programme 1999–2003. National technology agency report 6, 99 pp

  • Hall JP (2002) Sustainable production of forest biomass for energy. For Chronicle 78:391–396

    Google Scholar 

  • Hämäläinen J, Oijala T, Rajamaki J (1992) Metsämaan muokkauksen kustannuslaskentamalli (Cost calculation model for site preparation). Metsateho, Helsinki, 13 pp (in Finnish)

  • Heikkilä J, Sirén M, Ahtikoski A, Hynynen J, Sauvula T, Lehtonen M (2009) Energy wood thinning as a part of the stand management of Scots pine and Norway spruce. Silva Fenn 43:129–146

    Google Scholar 

  • Hoen HF, Solberg B (1994) Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. For Sci 40:429–451

    Google Scholar 

  • Hynynen J, Ojansuu R, Hökkä H, Siipilehto J, Salminen H, Haapala P (2002) Models for predicting stand development in MELA system. Finnish Forest Research Institute, Research papers 835, 116 pp

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Marquies M, Averyt K, Tignor MMB, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobson S, Kukkola M, Mälkönen E, Tveite B (2000) Impact of whole-tree harvesting and compensatory fertilization on growth of coniferous thinning stands. For Ecol Manage 129:41–51

    Article  Google Scholar 

  • Kaipainen T, Liski J, Pussinen A, Karjalainen T (2004) Managing carbon sinks by changing rotation length in European forests. Environ Sci Policy 7:205–219

    Article  CAS  Google Scholar 

  • Karjalainen T (1996) Dynamics and potentials of carbon sequestration in managed stands and wood products in Finland under changing climatic conditions. For Ecol Manage 80:113–132

    Article  Google Scholar 

  • Karjalainen T, Asikainen A (1996) Greenhouse gas emissions from the use of primary energy in forest operations and long-distance transportation of timber in Finland. Forestry 69:215–228

    Article  Google Scholar 

  • Karjalainen T, Asikainen A, Ilavsky J, Zamboni R, Hotari K-E, Röser D (2004) Estimating of energy wood potential in Europe. Working papers of the Finnish Forest Research Institute 6, 43 pp

  • Kärkkäinen L, Matala J, Harkonen K, Kellomäki S, Nuutinen T (2008) Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland. Biomass Bioenergy 32:934–943

    Article  Google Scholar 

  • Kellomäki S, Kolström M (1994) The influence of climate change on the productivity of Scots pine, Norway spruce, Pendula birch and Pubescent birch in southern and northern Finland. For Ecol Manage 65:201–217

    Article  Google Scholar 

  • Kellomäki S, Väisänen H, Hänninen H, Kolström T, Lauhanen R, Mattila U, Pajari B (1992) SIMA: a model for forest succession based on the carbon and nitrogen cycles with application to silvicultural management of the forest ecosystem. Silva Carelica 22:1–85

    Google Scholar 

  • Kellomäki S, Peltola H, Nuutinen T, Korhonen K, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos Trans R Soc 363:2341–2351

    Google Scholar 

  • Kilpeläinen A, Alam A, Strandman H, Kellomäki S (2011) Life cycle assessment tool for estimating net CO2 exchange of forest production. Global Change Biol Bioenergy. doi:10.1111/j.1757-1707.2011.01101.x

  • Kirschbaum MUF (2003) To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass Bioenergy 24:297–310

    Article  CAS  Google Scholar 

  • Kolström M (1998) Ecological simulation model for studying diversity of stand structure in boreal forests. Ecol Modell 111:17–36

    Article  Google Scholar 

  • Korpilahti A (1998) Finnish forest energy systems and CO2 consequences. Biomass Bioenergy 15:293–297

    Article  Google Scholar 

  • Kuitto PJ, Keskinen S, Lindroos J, Oijala T, Rajamäki J, Räsänen T, Terävä J (1994) Mechanized cutting and forest haulage. Tiedotus Metsäteho, Helsinki. Report 410, 47 pp (in Finnish with English summary)

  • Laitila J, Ala-Fossi A, Vartiamäki T, Ranta T, Asikainen A (2007) Kantojen noston ja metsäkuljetuksen tuottavuus (Productivity of stump lifting and forest haulage). Metlan työraportteja 46:1-26 (in Finnish). http://www.metla.fi/julkaisut/workingpapers/2007/mwp046.htm. Accessed 25 June 2010

  • Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2001) Which rotation length is favorable for carbon sequestration? Can J For Res 31:2004–2013

    Article  Google Scholar 

  • Maclaren JP (2000) Trees in the greenhouse—the role of forestry in mitigating the enhanced greenhouse effect. Rotorua, New Zealand. Forest research bulletin no. 219, 72 pp

  • Mäkinen H, Isomäki A (2004a) Thinning intensity and growth of Scots pine stands in Finland. For Ecol Manage 201:311–325

    Article  Google Scholar 

  • Mäkinen H, Isomäki A (2004b) Thinning intensity and growth of Norway spruce stands in Finland. Forestry 77:349–364

    Article  Google Scholar 

  • Mälkki H, Virtanen Y (2003) Selected emissions and efficiencies of energy systems based on logging and sawmill residues. Biomass Bioenergy 24:321–327

    Article  Google Scholar 

  • Peltola A (2005) Metsätilastollinen vuosikirja (Finnish statistical yearbook of forestry). Finnish Forest Research Institute, 421 pp (in Finnish)

  • Petritsch R, Hasenauer H, Pietsch SA (2007) Incorporating forest growth response to thinning within biome-BGC. For Ecol Manage 242:324–336

    Article  Google Scholar 

  • Pohjola J, Valsta L (2007) Carbon credits and management of Scots Pine and Norway spruce stands in Finland. For Policy Econ 9:789–798

    Article  Google Scholar 

  • Profft I, Mund M, Weber G-E, Weller E, Schulze E-D (2009) Forest management and carbon sequestration in wood product. Eur J For Res 128:399–413

    Article  Google Scholar 

  • Pussinen A, Karjalainen T, Mäkipää R, Valsta L, Kellomäki S (2002) Forest carbon sequestration and harvest in Scots pine stand under different climate and nitrogen deposition scenarios. For Ecol Manage 158:103–115

    Article  Google Scholar 

  • Repo A, Tuomi M, Liski J (2010) Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. Global Change Biol Bioenergy. doi:10.1111/j.1757-1707.2010.01065.x

  • Röser D, Asikainen A, Stupak I, Pasanen K (2008) Forest energy resources and potentials. In: Röser D, Asikainen A, Raulund-Rasmussen K, Stupak I (eds) Sustainable use of forest biomass for energy. Springer, The Netherlands, pp 9–28

    Chapter  Google Scholar 

  • Ruota J, Kellomäki S, Peltola H, Asikainen A (2011) Impacts of thinning and fertilization on timber and energy wood production in Norway spruce and Scots pine: scenario analyses based on ecosystem model simulations. Forestry 84(2):159–175

    Article  Google Scholar 

  • Schlamadinger B, Spitzer J, Kohlmaier GH, Lüdeke M (1995) Carbon balance of bioenergy from logging residues. Biomass Bioenergy 8:221–234

    Article  Google Scholar 

  • Seely B, Welham C, Kimmins H (2002) Carbon sequestration in a boreal forest ecosystem: results from the ecosystem simulation model, FORECAST. For Ecol Manage 169:123–135

    Article  Google Scholar 

  • Tapio (2006) Hyvän metsänhoidon suositukset (Recommendations for forest management). Metsätalouden kehittämiskeskus Tapio, Metsäkustannus Oy, 100 pp (in Finnish)

  • Thornley JHM, Cannell MGR (2000) Managing forests for wood yield and carbon storage: a theoretical study. Tree Physiol 20:477–484

    PubMed  Google Scholar 

  • Väkevä J, Pennanen O, Örn J (2004) Puutavara–autojen polttoaineen kulutus (Fuel consumption of timber trucks). Metsätehon raportti 166:32 pp (in Finnish)

    Google Scholar 

  • Wihersaari M (2005) Greenhouse gas emissions from final harvest fuel chip production in Finland. Biomass Bioenergy 28:435–443

    Article  CAS  Google Scholar 

  • Yoshioka T, Aruga K, Nitami T, Kobayashi H, Sakai H (2005) Energy and carbon dioxide (CO2) balance of logging residues as alternative energy resources: system analysis based on the method of a life cycle inventory (LCI) analysis. J For Res 10:125–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was funded from Nordic Energy Research (NER) (2007–2010) through the project ‘The Climate and Energy System; Risks, Potential and Adaptation—Renewable Energy: Bio-fuels working group’ coordinated by Prof. Seppo Kellomäki, School of Forest Sciences, University of Eastern Finland. The authors thank Mr. Harri Strandman for technical help and Dr. David Gritten for linguistic revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraful Alam.

Additional information

Communicated by K. Puettmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, A., Kilpeläinen, A. & Kellomäki, S. Impacts of initial stand density and thinning regimes on energy wood production and management-related CO2 emissions in boreal ecosystems. Eur J Forest Res 131, 655–667 (2012). https://doi.org/10.1007/s10342-011-0539-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-011-0539-8

Keywords

Navigation