Skip to main content

Advertisement

Log in

Homology modeling and virtual screening studies of FGF-7 protein—a structure-based approach to design new molecules against tumor angiogenesis

  • Original Article
  • Published:
Journal of Chemical Biology

Abstract

Keratinocyte growth factor (KGF) protein is a member of the fibroblast growth factor (FGF) family, which is also known as FGF-7. The FGF-7 plays an important role in tumor angiogenesis. In the present work, FGF-7 is treated as a potential therapeutic target to prevent angiogenesis in cancerous tissue. Computational techniques are applied to evaluate and validate the 3D structure of FGF-7 protein. The active site region of the FGF-7 protein is identified based on hydrophobicity calculations using CASTp and Q-site Finder active site prediction tools. The protein–protein docking study of FGF-7 with its natural receptor FGFR2b is carried out to confirm the active site region in FGF-7. The amino acid residues Asp34, Arg67, Glu116, and Thr194 in FGF-7 interact with the receptor protein (FGFR2b). A grid is generated at the active site region of FGF-7 using Glide module of Schrödinger suite. Subsequently, a virtual screening study is carried out at the active site using small molecular structural databases to identify the ligand molecules. The binding interactions of the ligand molecules, with piperazine moiety as a pharmacophore, are observed at Arg67 and Glu149 residues of the FGF-7 protein. The identified ligand molecules against the FGF-7 protein show permissible pharmacokinetic properties (ADME). The ligand molecules with good docking scores and satisfactory pharmacokinetic properties are prioritized and identified as novel ligands for the FGF-7 protein in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  Google Scholar 

  2. Finch PW, Rubin JS (2006) Keratinocyte growth factor expression and activity in cancer: implications for use in patients with solid tumors. J Natl Cancer Inst 98:812–824

    Article  CAS  Google Scholar 

  3. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  CAS  Google Scholar 

  4. Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  Google Scholar 

  5. Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945

    Article  CAS  Google Scholar 

  6. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580

    Article  CAS  Google Scholar 

  7. Laestander C, Engström W (2014) Role of fibroblast growth factors in elicitation of cell responses. Cell Prolif 47:3–11

    Article  CAS  Google Scholar 

  8. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  Google Scholar 

  9. Tsuboi R, Sato C, Kurita Y, Ron D, Rubin JS, Ogawa H (1993) Keratinocyte growth factor (FGF-7) stimulates migration and plasminogen activator activity of normal human keratinocytes. J Investig Dermatol 101:49–53

    Article  CAS  Google Scholar 

  10. Gillis P, Savla U, Volpert OV, Jimenez B, Waters CM, Panos RJ, Bouck NP (1999) Keratinocyte growth factor induces angiogenesis and protects endothelial barrier function. J Cell Sci 112:2049–2057

    CAS  Google Scholar 

  11. Beer HD, Gassmann MG, Munz B, Steiling H, Engelhardt F, Bleuel K, Werner S (2000) Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J Investig Dermatol Symp Proc 5:34–39

    Article  CAS  Google Scholar 

  12. Yamayoshi T, Nagayasu T, Matsumoto K, Abo T, Hishikawa Y, Koji T (2004) Expression of keratinocyte growth factor/fibroblast growth factor-7 and its receptor in human lung cancer: correlation with tumour proliferative activity and patient prognosis. J Pathol 204:110–118

    Article  CAS  Google Scholar 

  13. Rubin JS, Osada H, Finch PW, Taylor WG, Rudikoff S, Aaronson SA (1989) Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci USA 86:802–806

    Article  CAS  Google Scholar 

  14. Birrer MJ, Johnson ME, Hao K, Wong KK, Park DC, Bell A, Welch WR, Berkowitz RS, Mok SC (2007) Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J Clin Oncol 25:2281–2287

    Article  CAS  Google Scholar 

  15. Ricol D, Cappellen D, El Marjou A, Gil-Diez-de-Medina S, Girault JM, Yoshida T, Ferry G, Tucker G, Poupon MF, Chopin D, Thiery JP, Radvanyi F (1999) Tumour suppressive properties of fibroblast growth factor receptor 2-IIIb in human bladder cancer. Oncogene 18:7234–7243

    Article  CAS  Google Scholar 

  16. Zhang Y, Wang H, Toratani S, Sato JD, Kan M, McKeehan WL, Okamoto T (2001) Growth inhibition by keratinocyte growth factor receptor of human salivary adenocarcinoma cells through induction of differentiation and apoptosis. Proc Natl Acad Sci U S A 98:11336–11340

    Article  CAS  Google Scholar 

  17. Maretzky T, Evers A, Zhou W, Swendeman SL, Wong PM, Rafii S, Reiss K, Blobel CP (2011) Migration of growth factor-stimulated epithelial and endothelial cells depends on EGFR trans activation by ADAM17. Nat Commun 2:229

    Article  Google Scholar 

  18. Bansal GS, Cox HC, Marsh S, Gomm JJ, Yiangou C, Luqmani Y, Coombes RC, Johnston CL (1997) Expression of keratinocyte growth factor and its receptor in human breast cancer. Br J Cancer 75:1567–1574

    Article  CAS  Google Scholar 

  19. Ornitz DM, Marie PJ (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16:1446–1465

    Article  CAS  Google Scholar 

  20. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129

    Article  CAS  Google Scholar 

  21. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22:201–207

    Article  CAS  Google Scholar 

  22. Ahmad I, Iwata T, Leung HY (2012) Mechanisms of FGFR-mediated carcinogenesis. Biochim Biophys Acta 1823:850–860

    Article  CAS  Google Scholar 

  23. Finch PW, Yee LK, Chu MY, Chen TM, Lipsky MH, Maciag T, Friedman S, Epstein MH, Calabresi P (1997) Inhibition of growth factor mitogenicity and growth of tumor cell xenografts by a sulfonated distamycin A derivative. Pharmacology 55:269–278

    Article  CAS  Google Scholar 

  24. Takahama Y, Ochiya T, Tanooka H, Yamamoto H, Sakamoto H, Nakano H, Terada M (1999) Adenovirus-mediated transfer of HST-1/FGF-4 gene protects mice from lethal irradiation. Oncogene 18:5943–5947

    Article  CAS  Google Scholar 

  25. Min D, Taylor PA, Panoskaltsis-Mortari A, Chung B, Danilenko DM, Farrell C, Lacey DL, Blazar BR, Weinberg KI (2002) Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99:4592–4600

    Article  CAS  Google Scholar 

  26. Yamamoto H, Ochiya T, Tamamushi S, Toriyama-Baba H, Takahama Y, Hirai K, Sasaki H, Sakamoto H, Saito I, Iwamoto T, Kakizoe T, Terada M (2002) HST-1/FGF-4 gene activation induces spermatogenesis and prevents adriamycin-induced testicular toxicity. Oncogene 21:899–908

    Article  CAS  Google Scholar 

  27. Harjes U, Bensaad K, Harris AL (2012) Endothelial cell metabolism and implications for cancer therapy. Br J Cancer 107:1207–1212

    Article  CAS  Google Scholar 

  28. Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253

    Article  CAS  Google Scholar 

  29. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178

    Article  CAS  Google Scholar 

  30. Albini A, Tosetti F, Li VW, Noonan DM, Li WW (2012) Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol 9:498–509

    Article  CAS  Google Scholar 

  31. Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797

    Article  CAS  Google Scholar 

  32. Dorn M, E Silva MB, Buriol LS, Lamb LC (2014) Three-dimensional protein structure prediction: methods and computational strategies. Comput Biol Chem 53PB:251–276

    Article  Google Scholar 

  33. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  Google Scholar 

  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  35. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  36. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201

    Article  CAS  Google Scholar 

  37. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  Google Scholar 

  38. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  39. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23:318–326

    Article  CAS  Google Scholar 

  40. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  Google Scholar 

  41. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  CAS  Google Scholar 

  42. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  43. Laskowsky RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereo chemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  Google Scholar 

  44. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12:345–364

    Article  CAS  Google Scholar 

  45. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  Google Scholar 

  46. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  47. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118

    Article  CAS  Google Scholar 

  48. Laurie AT, Jackson RM (2005) Q-Site Finder: an energy-based method for the prediction of protein–ligand binding sites. Bioinformatics 21:1908–1916

    Article  CAS  Google Scholar 

  49. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein docking algorithm. Proteins 52:80–87

    Article  CAS  Google Scholar 

  50. Pierce B, Weng Z (2007) ZRANK: reranking protein docking predictions with an optimized energy function. Proteins 67:1078–1108

    Article  CAS  Google Scholar 

  51. Park MS, Gao C, Stern HA (2011) Estimating binding affinities by docking/scoring methods using variable protonation states. Proteins 79:304–314

    Article  CAS  Google Scholar 

  52. Kawatkar S, Wang H, Czerminski R, Joseph-McCarthy D (2009) Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using Glide. J Comput Aided Mol Des 23:527–539

    Article  CAS  Google Scholar 

  53. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  Google Scholar 

  54. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  55. Chen IJ, Foloppe N (2010) Drug-like bioactive structures and conformational coverage with the ligprep/confgen suite: comparison to programs MOE and catalyst. J Chem Inf Model 50:822–839

    Article  CAS  Google Scholar 

  56. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  Google Scholar 

  57. Vasavi M, Kiran KM, Sarita RP, Uma V (2012) Modeling of alternate RNA polymerase sigma D factor and identification of novel inhibitors by virtual screening. Cell Mol Bioeng 5:363–374

    Article  Google Scholar 

  58. Durrant JD, Friedman AJ, Rogers KE, McCammon JA (2013) Comparing neural-network scoring functions and the state of the art: applications to common library screening. J Chem Inf Model 53:1726–1735

    Article  CAS  Google Scholar 

  59. Ioakimidis L, Thoukydidis L, Mirza A, Naeem S, Reynisson J (2008) Benchmarking the reliability of QikProp. Correlation between experimental and predicted values. QSAR Comb Sci 27:445–456

    Article  CAS  Google Scholar 

  60. Malkhed V, Mustyala KK, Potlapally SR, Vuruputuri U (2014) Identification of novel leads applying in silico studies for mycobacterium multidrug resistant (MMR) protein. J Biomol Struct Dyn 32:1889–1906

    Article  CAS  Google Scholar 

  61. Ramatenki V, Potlapally SR, Dumpati RK, Vadija R, Vuruputuri U (2015) Homology modeling and virtual screening of ubiquitin conjugation enzyme E2A for designing a novel selective antagonist against cancer. J Recept Signal Transduct Res 35:536–549

    Article  CAS  Google Scholar 

  62. Singh T, Biswas D, Jayaram B (2011) AADS—an automated active site identification, docking and scoring protocol for protein targets based on physicochemical descriptors. J Chem Inf Model 51:2515–2527

    Article  CAS  Google Scholar 

  63. Girke T, Cheng LC, Raikhel N (2005) ChemMine. A compound mining database for chemical genomics. Plant Physiol 138:573–577

    Article  CAS  Google Scholar 

  64. Boobis A, Gundert-Remy U, Kremers P, Macheras P, Pelkonen O (2002) In silico prediction of ADME and pharmacokinetics report of an expert meeting organised by COST B15. Eur J Pharm Sci 17:183–193

    Article  CAS  Google Scholar 

  65. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  Google Scholar 

  66. Congreve M, Carr R, Murray C, Jhoti H (2003) A ’rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877

    Article  Google Scholar 

Download references

Acknowledgments

R.V. acknowledges the Council of Scientific and Industrial Research (CSIR)-INDIA for financial support. The authors R.K.D. and S.P.V. acknowledge the UGC-INDIA for financial support. The author V.R. acknowledges the Council of Scientific and Industrial Research (CSIR)-INDIA for financial support. The authors R.V., K.K.M., N.N., R.D., R.K.D., V.R., and S.P.V. acknowledge the Principal and the Head Department of Chemistry, University College of Science, Osmania University, Hyderabad, for providing facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Vuruputuri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadija, R., Mustyala, K.K., Nambigari, N. et al. Homology modeling and virtual screening studies of FGF-7 protein—a structure-based approach to design new molecules against tumor angiogenesis. J Chem Biol 9, 69–78 (2016). https://doi.org/10.1007/s12154-016-0152-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-016-0152-x

Keywords

Navigation