Skip to main content

Advertisement

Log in

Imaging the boundaries—innovative tools for microscopy of living cells and real-time imaging

  • Review
  • Published:
Journal of Chemical Biology

Abstract

Recently, light microscopy moved back into the spotlight, which is mainly due to the development of revolutionary technologies for imaging real-time events in living cells. It is truly fascinating to see enzymes “at work” and optically acquired images certainly help us to understand biological processes better than any abstract measurements. This review aims to point out elegant examples of recent cell-biological imaging applications that have been developed with a chemical approach. The discussed technologies include nanoscale fluorescence microscopy, imaging of model membranes, automated high-throughput microscopy control and analysis, and fluorescent probes with a special focus on visualizing enzyme activity, free radicals, and protein–protein interaction designed for use in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Corry B, Jayatilaka D, Martinac B, Rigby P (2006) Determination of the orientational distribution and orientation factor for transfer between membrane bound fluorophores using a confocal microscope. Biophys J 91(3):1032–1045

    CAS  Google Scholar 

  2. O'Hare HM, Johnsson K, Gautier A (2007) Chemical probes shed light on protein function. Curr Opin Struct Biol 17:488–494

    Google Scholar 

  3. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    CAS  Google Scholar 

  4. Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076

    CAS  Google Scholar 

  5. Stroffekova K, Proenza C, Beam K (2001) The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins. Pflügers Archiv European Journal of Physiology 442:859–866

    CAS  Google Scholar 

  6. Martin BR, Giepmans BN, Adams SR, Tsien RY (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23:1308–1314

    CAS  Google Scholar 

  7. Hoffmann C, Gaietta G, Bunemann M, Adams SR, Oberdorff-Maass S, Behr B, Vilardaga JP, Tsien RY, Ellisman MH, Lohse MJ (2005) A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods 2:171–176

    CAS  Google Scholar 

  8. Dyachok O, Isakov Y, Sagetorp J, Tengholm A (2006) Oscillations of cyclic AMP in hormone-stimulated insulin-secreting [beta]-cells. Nature 439:349–352

    CAS  Google Scholar 

  9. Andresen M, Schmitz-Salue R, Jakobs S (2004) Short tetracysteine tags to {beta}-tubulin demonstrate the significance of small labels for live cell imaging. Mol Biol Cell 15:5616–5622

    CAS  Google Scholar 

  10. Nakanishi J, Takarada T, Yunoki S, Kikuchi Y, Maeda M (2006) FRET-based monitoring of conformational change of the [beta]2 adrenergic receptor in living cells. Biochem Biophys Res Comm 343:1191–1196

    CAS  Google Scholar 

  11. Luedtke NW, Dexter RJ, Fried DB, Schepartz A (2007) Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH. Nat Chem Biol 3:779–784

    CAS  Google Scholar 

  12. Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    CAS  Google Scholar 

  13. Chacko GK, Lund-Katz S, Johnson WJ, Karlin JB (1987) Tetranitromethane modification of human high density lipoprotein (HDL3): inactivation of high density lipoprotein binding is not related to cross-linking of phospholipids to apoproteins. J Lipid Res 28:332–337

    CAS  Google Scholar 

  14. Kraft ML, Weber PK, Longo ML, Hutcheon ID, Boxer SG (2006) Phase separation of lipid membranes analyzed with high-resolution secondary ion mass spectrometry. Science 313:1948–1951

    CAS  Google Scholar 

  15. Scheuring S, Rigaud JL, Sturgis JN (2004) Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. EMBO J 23:4127–4133

    CAS  Google Scholar 

  16. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278:21655–21662

    CAS  Google Scholar 

  17. Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170

    CAS  Google Scholar 

  18. Perez J-B, Martinez KL, Segura J-M, Vogel H (2006) Supported cell-membrane sheets for functional fluorescence imaging of membrane proteins. Adv Funct Mater 16:306–312

    CAS  Google Scholar 

  19. Perez JB, Segura JM, Abankwa D, Piguet J, Martinez KL, Vogel H (2006) Monitoring the diffusion of single heterotrimeric G proteins in supported cell-membrane sheets reveals their partitioning into microdomains. J Mol Biol 363:918–930

    CAS  Google Scholar 

  20. Rosivatz E, Matthews JG, McDonald NQ, Mulet X, Ho KK, Lossi N, Schmid AC, Mirabelli M, Pomeranz KM, Erneux C, Lam EW, Vilar R, Woscholski R (2006) A small molecule inhibitor for phosphatase and tensin homologue deleted on chromosome 10 (PTEN). ACS Chem Biol 1:780–790

    CAS  Google Scholar 

  21. Doeven MK, Folgering JH, Krasnikov V, Geertsma ER, van den BG, Poolman B (2005) Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 88:1134–1142

    CAS  Google Scholar 

  22. Kahya N, Pecheur EI, de Boeij WP, Wiersma DA, Hoekstra D (2001) Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion. Biophys J 81:1464–1474

    Article  CAS  Google Scholar 

  23. Fischer T, Lu L, Haigler HT, Langen R (2007) Annexin B12 is a sensor of membrane curvature and undergoes major curvature-dependent structural changes. J Biol Chem 282:9996–10004

    CAS  Google Scholar 

  24. Drin G, Casella JF, Gautier R, Boehmer T, Schwartz TU, Antonny B (2007) A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14:138–146

    CAS  Google Scholar 

  25. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–499

    CAS  Google Scholar 

  26. Gurtu V, Kain SR, Zhang G (1997) Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem 251:98–102

    CAS  Google Scholar 

  27. Kawai H, Suzuki T, Kobayashi T, Sakurai H, Ohata H, Honda K, Momose K, Namekata I, Tanaka H, Shigenobu K, Nakamura R, Hayakawa T, Kawanishi T (2005) Simultaneous real-time detection of initiator- and effector-caspase activation by double fluorescence resonance energy transfer analysis. J Pharmacol Sci 97:361–368

    CAS  Google Scholar 

  28. Sameni M (2001) Imaging proteolysis by living human glioma cells. Biol Chem 382:785–788

    CAS  Google Scholar 

  29. Jaffer FA, Kim DE, Quinti L, Tung CH, Aikawa E, Pande AN, Kohler RH, Shi GP, Libby P, Weissleder R (2007) Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 115:2292–2298

    CAS  Google Scholar 

  30. Sameni M, Moin K, Sloane BF (2000) Imaging proteolysis by living human breast cancer cells. Neoplasia 2:496–504

    CAS  Google Scholar 

  31. Mook OR, Van OC, Ackema EG, Van MF, Frederiks WM (2003) In situ localization of gelatinolytic activity in the extracellular matrix of metastases of colon cancer in rat liver using quenched fluorogenic DQ-gelatin. J Histochem Cytochem 51:821–829

    CAS  Google Scholar 

  32. Cravatt BF (2005) Kinase chemical genomics—a new rule for the exceptions. Nat Methods 2:411–412

    CAS  Google Scholar 

  33. Prendergast FG, Meyer M, Carlson GL, Iida S, Potter JD (1983) Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. J Biol Chem 258:7541–7544

    CAS  Google Scholar 

  34. Higashi H, Sato K, Ohtake A, Omori A, Yoshida S, Kudo Y (1997) Imaging of cAMP-dependent protein kinase activity in living neural cells using a novel fluorescent substrate. FEBS Lett 414:55–60

    CAS  Google Scholar 

  35. Giovannardi S, Lando L, Peres A (1998) Flash photolysis of caged compounds: casting light on physiological processes news. Physiol Sci 13:251–255

    CAS  Google Scholar 

  36. Wang Q, Scheigetz J, Roy B, Ramachandran C, Gresser MJ (2002) Novel caged fluorescein diphosphates as photoactivatable substrates for protein tyrosine phosphatases. Biochim Biophys Acta Proteins Proteomics 1601:19–28

    CAS  Google Scholar 

  37. Ellis-Davies GCR (2007) Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Methods 4:619–628

    CAS  Google Scholar 

  38. Berger AB (2004) Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery. Am J Pharmacogenomics 4:371–381

    CAS  Google Scholar 

  39. Jessani N, Cravatt BF (2004) The development and application of methods for activity-based protein profiling. Curr Opin Chem Biol 8:54–59

    CAS  Google Scholar 

  40. Adam GC, Sorensen EJ, Cravatt BF (2002) Chemical strategies for functional proteomics. Mol Cell Proteomics 1:781–790

    CAS  Google Scholar 

  41. Jeffery DA, Bogyo M (2003) Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol 14:87–95

    CAS  Google Scholar 

  42. Speers AE, Cravatt BF (2004) Chemical strategies for activity-based proteomics. ChemBioChem 5:41–47

    CAS  Google Scholar 

  43. Blum G, Mullins SR, Keren K, Fonovic M, Jedeszko C, Rice MJ, Sloane BF, Bogyo M (2005) Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol 1:203–209

    CAS  Google Scholar 

  44. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3:668–677

    CAS  Google Scholar 

  45. Ringer S (1883) Ca2+ was necessary for contraction in isolated rat hearts. J Physiol 4:29–43

    CAS  Google Scholar 

  46. Gobel W, Helmchen F (2007) In vivo calcium imaging of neural network function. Physiology 22:358–365

    CAS  Google Scholar 

  47. Gee KR, Rukavishnikov A, Rothe A (2003) New Ca2+ fluoroionophores based on the BODIPY fluorophore. Comb Chem High Throughput Screen 6:363–366

    CAS  Google Scholar 

  48. Vallee BL, Auld DS (1993) New perspective on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. Biochemistry 32:6493–6500

    CAS  Google Scholar 

  49. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    CAS  Google Scholar 

  50. Zhang Y, Aizenman E, DeFranco DB, Rosenberg PA (2007) Intracellular zinc release, 12-lipoxygenase activation and MAPK dependent neuronal and oligodendroglial death. Mol Med 13:350–355

    CAS  Google Scholar 

  51. Bertoni-Freddari C, Fattoretti P, Casoli T, Stefano GD, Giogetti B, Balietti M (2008) Brain aging: the zinc connection. Experimental Gerontology 43:389–393

    CAS  Google Scholar 

  52. Kikuchi K, Komatsu K, Nagano T (2004) Zinc sensing for cellular application. Curr Opin Chem Biol 8:182–191

    CAS  Google Scholar 

  53. Bozym RA, Thompson RB, Stoddard AK, Fierke CA (2006) Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol 1:103–111

    CAS  Google Scholar 

  54. Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27:2524–2531

    CAS  Google Scholar 

  55. Lim MH, Lippard SJ (2007) Metal-based turn-on fluorescent probes for sensing nitric oxide. Acc Chem Res 40:41–51

    CAS  Google Scholar 

  56. Tsuge K, DeRosa F, Lim MD, Ford PC (2004) Intramolecular reductive nitrosylation: reaction of nitric oxide and a copper(II) complex of a cyclam derivative with pendant luminescent chromophores. J Am Chem Soc 126:6564–6565

    CAS  Google Scholar 

  57. Lim MH, Xu D, Lippard SJ (2006) Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat Chem Biol 2:375–380

    CAS  Google Scholar 

  58. Sato M (2006) Imaging molecular events in single living cells. Anal Bioanal Chem 386:435–443

    CAS  Google Scholar 

  59. Sato M, Nakajima T, Goto M, Umezawa Y (2006) Cell-based indicator to visualize picomolar dynamics of nitric oxide release from living cells. Anal Chem 78:8175–8182

    CAS  Google Scholar 

  60. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022

    CAS  Google Scholar 

  61. Hong JH, Moon SJ, Byun HM, Kim MS, Jo H, Bae YS, Lee SI, Bootman MD, Roderick HL, Shin DM, Seo JT (2006) Critical role of phospholipase Cgamma1 in the generation of H2O2-evoked [Ca2+]i oscillations in cultured rat cortical astrocytes. J Biol Chem 281:13057–13067

    CAS  Google Scholar 

  62. Wang JF, Zhang X, Groopman JE (2004) Activation of vascular endothelial growth factor receptor-3 and its downstream signaling promote cell survival under oxidative stress. J Biol Chem 279:27088–27097

    CAS  Google Scholar 

  63. Mehdi MZ, Azar ZM, Srivastava AK (2007) Role of receptor and nonreceptor protein tyrosine kinases in H2O2-induced PKB and ERK1/2 signaling. Cell Biochem Biophys 47:1–10

    CAS  Google Scholar 

  64. Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, Reece JM, Deeney JT, Andersen ME, Corkey BE, Collins S (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783–1791

    CAS  Google Scholar 

  65. Duchen MR, Surin A, Jacobson J (2003) Imaging mitochondrial function in intact cells. Methods Enzymol 361:353–389

    CAS  Google Scholar 

  66. Miller EW, Tulyathan O, Isacoff EY, Chang CJ (2007) Molecular imaging of hydrogen peroxide produced for cell signaling. Nat Chem Biol 3:263–267

    CAS  Google Scholar 

  67. Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ (2005) Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J Am Chem Soc 127:16652–16659

    CAS  Google Scholar 

  68. Kim HJ, Barajas B, Chan RC, Nel AE (2007) Glutathione depletion inhibits dendritic cell maturation and delayed-type hypersensitivity: implications for systemic disease and immunosenescence. J Allergy Clin Immunol 119:1225–1233

    CAS  Google Scholar 

  69. Cross JV, Templeton DJ (2004) Thiol oxidation of cell signaling proteins: controlling an apoptotic equilibrium. J Cell Biochem 93:104–111

    CAS  Google Scholar 

  70. Yura T, Fukunaga M, Khan R, Nassar GN, Badr KF, Montero A (1999) Free-radical-generated F2-isoprostane stimulates cell proliferation and endothelin-1 expression on endothelial cells. Kidney Int 56:471–478

    CAS  Google Scholar 

  71. Sadok A, Bourgarel-Rey V, Gattacceca F, Penel C, Lehmann M, Kovacic H (2007) Nox1-dependent superoxide production controls colon adenocarcinoma cell migration. Biochim Biophys Acta Mol Cell Res 1783(1):23–33

    Google Scholar 

  72. Abid MR, Spokes KC, Shih SC, Aird WC (2007) NADPH oxidase activity selectively modulates vascular endothelial growth factor signaling pathways. J Biol Chem 282:35373–35385

    CAS  Google Scholar 

  73. Hwang C (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502

    CAS  Google Scholar 

  74. Goldman R, Stoyanovsky DA, Day BW, Kagan VE (1995) Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin. Biochemistry 34:4765–4772

    CAS  Google Scholar 

  75. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    CAS  Google Scholar 

  76. Dooley CT, Dore TM, Hanson GT, Jackson WC, Remington SJ, Tsien RY (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279:22284–22293

    CAS  Google Scholar 

  77. Liebel U, Starkuviene V, Erfle H, Simpson JC, Poustka A, Wiemann S, Pepperkok R (2003) A microscope-based screening platform for large-scale functional protein analysis in intact cells. FEBS Lett 554(3):394–398

    CAS  Google Scholar 

  78. Paran Y, Lavelin I, Naffar-Abu-Amara S, Winograd-Katz S, Liron Y, Geiger B, Kam Z (2006) Development and application of automatic high-resolution light microscopy for cell-based screens. Methods Enzymol 414:228–247

    CAS  Google Scholar 

  79. Paran Y, Ilan M, Kashman Y, Goldstein S, Liron Y, Geiger B, Kam Z (2007) High-throughput screening of cellular features using high-resolution light-microscopy; application for profiling drug effects on cell adhesion. J Struct Biol 158:233–243

    CAS  Google Scholar 

  80. Carpenter AE (2007) Image-based chemical screening. Nat Chem Biol 3:461–465

    CAS  Google Scholar 

  81. Burridge K, Nuckolls G, Otey C, Pavalko F, Simon K, Turner C (1990) Actin-membrane interaction in focal adhesions. Cell Differ Dev 32:337–342

    CAS  Google Scholar 

  82. Han EK, McGonigal T (2007) Role of focal adhesion kinase in human cancer: a potential target for drug discovery. Anti Canc Agents Med Chem 7:681–684

    CAS  Google Scholar 

  83. Hiscox S, Morgan L, Green TP, Barrow D, Gee J, Nicholson RI (2006) Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res Treat 97:263–274

    CAS  Google Scholar 

  84. Angelucci A, Bologna M (2007) Targeting vascular cell migration as a strategy for blocking angiogenesis: the central role of focal adhesion protein tyrosine kinase family. Curr Pharm Des 13:2129–2145

    CAS  Google Scholar 

  85. Ballestrem C, Erez N, Kirchner J, Kam Z, Bershadsky A, Geiger B (2006) Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. J Cell Sci 119:866–875

    CAS  Google Scholar 

  86. Brown MC, Cary LA, Jamieson JS, Cooper JA, Turner CE (2005) Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness. Mol Biol Cell 16:4316–4328

    CAS  Google Scholar 

  87. Perlman ZE, Mitchison TJ, Mayer TU (2005) High-content screening and profiling of drug activity in an automated centrosome-duplication assay. ChemBioChem 6:145–151

    CAS  Google Scholar 

  88. Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ (2004) Multidimensional drug profiling by automated microscopy. Science 306:1194–1198

    CAS  Google Scholar 

  89. Loo LH, Wu LF, Altschuler SJ (2007) Image-based multivariate profiling of drug responses from single cells. Nat Methods 4:445–453

    CAS  Google Scholar 

  90. Tanaka M, Bateman R, Rauh D, Vaisberg E, Ramachandani S, Zhang C, Hansen KC, Burlingame AL, Trautman JK, Shokat KM, Adams CL (2005) An unbiased cell morphology-based screen for new, biologically active small molecules. PLoS Biol 3:e128

    Google Scholar 

  91. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen. Wahrnehmung Arch f Mikr Anat 9:413–429

    Google Scholar 

  92. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. PNAS 97:8206–8210

    CAS  Google Scholar 

  93. Donnert G, Keller J, Wurm CA, Rizzoli SO, Westphal V, Schonle A, Jahn R, Jakobs S, Eggeling C, Hell SW (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92:L67–L69

    CAS  Google Scholar 

  94. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956

    CAS  Google Scholar 

  95. Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Luhrmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. PNAS 103:11440–11445

    CAS  Google Scholar 

  96. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. PNAS 102:17565–17569

    CAS  Google Scholar 

  97. Schwentker MA, Bock H, Hofmann M, Jakobs S, Bewersdorf J, Eggeling C, Hell SW (2007) Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microsc Res Tech 70:269–280

    CAS  Google Scholar 

  98. Evanko D (2008) Seeing fluorescence at super-resolution. Nat Methods 5:22

    CAS  Google Scholar 

  99. Heilemann M, Margeat E, Kasper R, Sauer M, Tinnefeld P (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127:3801–3806

    CAS  Google Scholar 

  100. Bates M, Blosser TR, Zhuang X (2005) Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett 94:108101

    Google Scholar 

  101. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796

    CAS  Google Scholar 

  102. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753

    CAS  Google Scholar 

  103. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    CAS  Google Scholar 

  104. Hell SW, Dyba M, Jakobs S (2004) Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 14:599–609

    CAS  Google Scholar 

  105. Hell SW, Nagorni M (1998) 4Pi confocal microscopy with alternate interference. Opt Lett 23:1567–1569

    CAS  Google Scholar 

  106. Heintzmann R, Ficz G (2006) Breaking the resolution limit in light microscopy. Brief Funct Genomic Proteomic 5:289–301

    Google Scholar 

  107. Heintzmann R, Ficz G (2007) Breaking the resolution limit in light microscopy. In: Sluder G, Wolf DE (eds) Digital microscopy, volume 81, third edn: methods in cell biology. Academic, New York, pp 561–580

    Google Scholar 

Download references

Acknowledgement

This work was supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Rosivatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosivatz, E. Imaging the boundaries—innovative tools for microscopy of living cells and real-time imaging. J Chem Biol 1, 3–15 (2008). https://doi.org/10.1007/s12154-008-0004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-008-0004-4

Keywords

Navigation