Skip to main content
Log in

Zero-field mobilities in helium: highly accurate values for use in ion mobility spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

The zero-field mobilities of 46 atomic ions in helium are calculated as functions of the gas temperature in an ion mobility spectrometer. The calculations are based on highly accurate, ab initio potential energy curves obtained in the last few years. In general, they start from a small value at low temperature, rise steadily to a maximum at some specific temperature, T max , and then decline at higher temperatures. The ratio of T max to the dissociation energy (well depth) of the ion-neutral interaction potential is shown to be approximation the same for all singly-charged ions and a few multiply-charged ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armentrout PB (2011) In: Wilkins CL, Trimpin S (eds) Ion Mobility Spectrometry-Mass Spectrometry. CRC Press, Boca Raton, Florida

    Google Scholar 

  2. Buchachenko AA, Tscherbul TV, Klos J, Szczesniak MM, Chalasinski G, Webb R, Viehland LA (2005) Interaction potentials of the Rg-I anions, neutrals, and cations (Rg = He, Ne, Ar). J Chem Phys 122:194311

    Article  CAS  Google Scholar 

  3. Buchachenko AA, Klos J, Szczesniak MM, Chalasinski G, Gray BR, Wright TG, Wood EL, Viehland LA, Qing E (2006) Interaction potentials for Br--Rg (Rg=He-Rn): spectroscopy and transport coefficients. J Chem Phys 125:064305

    Article  Google Scholar 

  4. Buchachenko AA, Grinev TA, Wright TG, Viehland LA (2008) Interactions between anionic and neutral bromine and rare gas atoms. J Chem Phys 128:064317

    Article  Google Scholar 

  5. Buchachenko AA, Wright TG, Lee EPF, Viehland LA (2009) Interaction potentials, spectroscopy and transport properties of the Br+-RG systems (RG = He-Rn). J Phys Chem A 123:14431

    Article  Google Scholar 

  6. Danailov DM, Viehland LA, Johnsen R, Wright TG, Dickinson AS (2008) Transport of O+ through argon. J Chem Phys 128:134302

    Article  Google Scholar 

  7. Gardner AM, Gutsmiedl KA, Wright TG, Breckenridge WH, Chapman CYN, Viehland LA (2010) Theoretical study of Al+-RG (RG = He-Rn). J Chem Phys 133:164302

    Article  Google Scholar 

  8. Gardner AM, Withers CD, Graneck JB, Wright TG, Viehland LA, Breckenridge WH (2010) Theoretical study of M+-RG and M2+-RG complexes and transport of M+ through RG (M = Be and Mg, RG = He-Rn). J Phys Chem A 114:7631–7641

    Article  CAS  Google Scholar 

  9. Gardner AM, Withers CD, Wright TG, Kaplan KI, Chapman CYN, Viehland LA, Lee EPF, Breckenridge WH (2010) Theoretical study of the bonding in Mn+ -RG complexes and the transport of Mn+ through RG (M = Ca, Sr, Ra; n = 1,2; RG = He-Rn). J Chem Phys 132:054302

    Article  Google Scholar 

  10. Gray BR, Wright TG, Wood EL, Viehland LA (2006) Accurate potential energy curves for F–Rg (Rg- = He-Rn): spectroscopy and transport coefficients. Phys Chem Chem Phys 8:4752–4757

    Article  CAS  Google Scholar 

  11. Gray BR, Lee EPF, Yousef A, Shrestha S, Viehland LA, Wright TG (2006) Accurate potential energy curves for Tl+-Rg (Rg = He-Rn): spectroscopy and transport coefficients. Mol Phys 104:3237–3244

    Article  CAS  Google Scholar 

  12. Hickling HL, Viehland LA, Shepherd DT, Soldan P, Lee EPF, Wright TG (2004) Spectroscopy of M+·Rg and transport coefficients of M+ in Rg (M = Rb-Fr, Rg = He-Rn). Phys Chem Chem Phys 6:4233–4239

    Article  CAS  Google Scholar 

  13. Lozeille J, Winata E, Soldan P, Lee EPF, Viehland LA, Wright TG (2002) Spectroscopy of Li+·Rg and Li+-Rg transport coefficients (Rg = He-Rn). Phys Chem Chem Phys 4:3601–3610

    Article  CAS  Google Scholar 

  14. Mason EA, McDaniel EW (1988) Transport Properties of Ions in Gases. Wiley, New York

    Book  Google Scholar 

  15. McGuirk MF, Viehland LA, Lee EPF, Breckenridge WH, Withers CD, Gardner AM, Plowright EJ, Wright TG (2009) Theoretical study of Ban+-RG complexes and transport of Ban+ through RG (n = 1,2; RG = He-Rn). J Chem Phys 130:194305

    Article  Google Scholar 

  16. Soldan P, Lee EPF, Wright TG (1999) Interatomic potentials for the Na+·Rg complexes (RG = He, Ne and Ar). Mol Phys 97:139–149

    Article  CAS  Google Scholar 

  17. Soldan P, Lee EPF, Lozeille J, Murrell JN, Wright TG (2001) High-quality interatomic potential for Li+·He. Chem Phys Lett 343:429–436

    Article  CAS  Google Scholar 

  18. Qing E, Viehland LA, Lee EPF, Wright TG (2006) Interaction potentials and spectroscopy of Hg+Rg and Cd+Rg and transport coefficients for Hg+ and Cd+ in Rg (Rg = He-Rn). J Chem Phys 124:044316

    Article  Google Scholar 

  19. Viehland LA, Mason EA (1975) Gaseous ion mobility in electric fields of arbitrary strength. Ann Phys (NY) 91:499–533

    Article  CAS  Google Scholar 

  20. Viehland LA, Mason EA (1978) Gaseous ion mobility and diffusion in electric fields of arbitrary strength. Ann Phys (NY) 110:287–328

    Article  CAS  Google Scholar 

  21. Viehland LA (1982) Gaseous ion transport coefficients. Chem Phys 70:149–156

    Article  CAS  Google Scholar 

  22. Viehland LA (1984) Interaction potentials for the alkali ion-rare gas systems. Chem Phys 85:291–305

    Article  CAS  Google Scholar 

  23. Viehland LA (1994) Velocity distribution functions and transport coefficients of atomic ions in atomic gases by a Gram-Charlier approach. Chem Phys 179:71–92

    Article  Google Scholar 

  24. Viehland LA (2001) Ion-atom interaction potentials and transport properties. Comput Phys Commun 142:7–13

    Article  CAS  Google Scholar 

  25. Viehland LA, Lozeille J, Soldan P, Lee EPF, Wright TG (2003) Spectroscopy of Na+·Rg and transport coefficients of Na+ in Rg (Rg = He-Rn). J Chem Phys 119:3729–3736

    Article  CAS  Google Scholar 

  26. Viehland LA, Lozeille J, Soldan P, Lee EPF, Wright TG (2004) Spectroscopy of K+·Rg and transport coefficients of K+ in Rg (Rg = He-Rn). J Chem Phys 121:341–351

    Article  CAS  Google Scholar 

  27. Viehland LA, Webb R, Lee EPF, Wright TG (2005) Accurate potential energy curves of HeO, NeO and ArO: spectroscopy and transport coefficients. J Chem Phys 122:114302

    Article  Google Scholar 

  28. Viehland LA, Gray BR, Wright TG (2009) Interaction potentials, spectroscopy and transport properties of RG+-He (RG = Ar-Rn). Mol Phys 107:2127–2139

    Article  CAS  Google Scholar 

  29. Viehland LA, Chang Y (2010) Transport cross sections for collisions between particles. Comput Phys Commun 181:1687–1696

    Article  CAS  Google Scholar 

  30. Withers CD, Wright TG, Viehland LA, Grossman L, Kirkpatrick CC, Lee EPF (2011) Theoretical study of Cl–RG (rare gas) complexes and transport of Cl- through RG (RG = He-Rn). J Chem Phys 135:024312

    Article  Google Scholar 

  31. Wright TG, Viehland LA (2006) Accurate potential energy curves for HeS: spectroscopy and transport coefficients. Chem Phys Lett 420:24–28

    Article  CAS  Google Scholar 

  32. Wright TG, Lee EPF, Gray BR, Joyner NA, Johnson SH, Viehland LA, Breckenridge WH (2007) Accurate potential energy curves for Zn+/Rg (Rg = He-Rn): spectroscopy and transport coefficients. Chem Phys Lett 450:19–24

    Article  Google Scholar 

  33. Wright TG, Lee EPF, Viehland LA (2008) Interaction potential of Al3+-Ne and the mobility of Al3+ in He and Ne. Chem Phys Lett 467:66–69

    Article  CAS  Google Scholar 

  34. Wright TG, Gray BR, Viehland LA, Johnsen R (2008) Interaction potentials, spectroscopy and transport properties of Ne+-He and He+-Ne. J Chem Phys 129:184307

    Article  Google Scholar 

  35. Yousef A, Shrestha S, Viehland LA, Lee EPF, Gray BR, Ayles VL, Wright TG, Breckenridge WH (2007) Interaction potentials and transport properties of coinage metal cations in rare gases. J Chem Phys 127:154309

    Article  Google Scholar 

Download references

Acknowledgment

The author is grateful for discussions with Dr. William Siems, who pointed out the need for data such as are reported here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry A. Viehland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viehland, L.A. Zero-field mobilities in helium: highly accurate values for use in ion mobility spectrometry. Int. J. Ion Mobil. Spec. 15, 21–29 (2012). https://doi.org/10.1007/s12127-011-0079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-011-0079-4

Keywords

Navigation