Skip to main content
Log in

Accurate gaseous ion mobility measurements

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

It is shown that theoretical values of the mobility of atomic ions in gases can be used to calibrate a drift-tube mass spectrometer, leading to subsequent measurements that are accurate to 0.6% for He+ in He near room temperature as the ratio of the electrostatic field strength to the gas number density ranges up to 2 × 10−19 Vm2. Values of the ratio of the parallel diffusion coefficient to the mobility are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomson JJ, Rutherford E (1896) On the passage of electricity through gases exposed to Röntgen rays. Phil Mag Series 5(42): 392–407

  2. Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley, New York, pp 31–33

    Book  Google Scholar 

  3. Mason EA, McDaniel EW (1988) op. cit., pp 51–86

  4. Viehland LA (1994) Velocity distribution functions and transport coefficients of atomic ions in atomic gases by a Gram-Charlier approach. Chem Phys 179:71–92

    Article  Google Scholar 

  5. Revercomb HE, Mason EA (1975) Theory of plasma chromatography/gaseous electrophoresis–A Review. Anal Chem 47:970–983

    Article  CAS  Google Scholar 

  6. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry, 2nd Edn. Taylor and Francis, Boca Raton, pp 9–25

    Book  Google Scholar 

  7. LXCat (2015) http://fr.lxcat.net/home/(accessedMay,2017)

  8. Pitchford LC, Alves LL, Bartschat K, Biagi SF, Bordage MC, Bray I, Brion CE, Brunger MJ, Campbell L, Chachereau A, Chaudhury B, Christophorou LG, Carbone E, Dyatko NA, Franck CM, Fursa DV, Gangwar RK, Guerra V, Haefliger P, Hagelaar GJM, Hoesl Itikawa AY, Kochetov IV, McEachran RP, Morgan WL, Napartovich AP, Puech V, Rabie M, Sharma L, Srivastava R, Stauffer AD, Tennyson J, de Urquijo J, van Dijk J, Viehland LA, Zammit MC, Zatsarinny O, Pancheshnyi S (2017) LXCat: an open-access, web-based platform for data needed for modeling low-temperature plasmas. Plasma Process Polym 14:1600098

    Article  Google Scholar 

  9. Manard MJ, Kemper PR (2016) Characterizing the electronic states of the second-row transition metal cations using high-resolution ion mobility mass spectrometry. Int J Mass Spectrom 407:69–76

    Article  CAS  Google Scholar 

  10. Manard MJ, Kemper PR (2017) Reduced mobilities of lanthanide cations using high-resolution ion mobility mass spectrometry with comparisons between experiment and theory. Int J Mass Spectrom 412:14–19

    Article  CAS  Google Scholar 

  11. Viehland LA (2015) Minimizing false positives in ion mobility spectrometry by changing the field or pressure. Int J Mass Spectrom 18:171–175

    CAS  Google Scholar 

  12. Tuttle WD, Thorington RL, Viehland LA, Wright TG (2017) Theoretical study of Si+(2 P J )-RG complexes and transport of Si+(2 P J ) in RG (RG=He-Ar). Mol Phys 115:437–446

    Article  CAS  Google Scholar 

  13. Fahey DW, Fehsenfeld FC, Ferguson EE, Viehland LA (1981) Reactions of Si+ with H2O and O2 and SiO+ with H2 and D2. J Chem Phys 75:669–674

    Article  CAS  Google Scholar 

  14. Viehland LA, Skaist T, Adhikari C, Siems WF (2017) Accurate zero-field mobilities of atomic ions in the rare gases for calibration of ion mobility spectrometers. Int J Ion Mobil Spectrom 20:1–9

    Article  CAS  Google Scholar 

  15. Laatiaoui M, Backe H, Habs D, Kunz P, Sewtz M (2014) Low-field mobilities of rare-earth metals. Eur Phys J D 66:232

    Article  Google Scholar 

  16. England JP, Elford MT (1987) The mobility of Li+ ions in helium at 294 K and high E/N values. Aust J Phys 40:355–365

    CAS  Google Scholar 

  17. Standish RK (1987) Non-hydrodynamic contributions to the end effect in time of flight swarm experiments. Aust J Phys 40:519–525

    Article  CAS  Google Scholar 

  18. Kondo K, Tagashira H (1993) Short-time and -distance relaxation of swarms in gases. J Phys D App Phys 26:1948–1956

    Article  Google Scholar 

  19. Yousef A, Shrestha S, Viehland LA, Lee EPF, Gray BR, Ayles VL, Wright TG, Breckenridge WH (2007) Interaction potentials and transport properties of coinage metal cations in rare gases. J Chem Phys 127:154309

    Article  Google Scholar 

  20. Danailov DM, Viehland LA, Johnsen R, Wright TG, Dickinson AS (2008) Transport of O+ through argon gas. J Chem Phys 128:134302

    Article  Google Scholar 

  21. Viehland LA, Johnsen R, Gray BR, Wright TG (2016) Transport coefficients of He+ ions in helium. J Chem Phys 144:074506

    Article  Google Scholar 

  22. Helm H (1977) The cross section for symmetric charge exchange of He+ in He at energies between 0-3 and 8 eV. J Phys B 10:3683–3697

    Article  CAS  Google Scholar 

  23. Basurto E, de Urquijo J, Alvarez I, Cisneros C (2000) Mobility of He+, Ne+, Ar+, N\(_{2}^{+}\), O\(_{2}^{+}\) and CO\(_{2}^{+}\) in their parent gases. Phys Rev E 61:3053–3057

    Article  CAS  Google Scholar 

  24. Skullerud HR, Larsen P-H (1990) Mobility and diffusion of atomic helium and neon ions in their parent gases. J Phys B 23:1017–1041

    Article  CAS  Google Scholar 

  25. Gatland IR (1974) Analysis for ion drift tube experiments. Case Stud. Atom. Phys. 4:369–452

    CAS  Google Scholar 

  26. Vrhovac SB, Petrovic ZL, Viehland LA, Santhanam TS (1999) Third-order transport coefficients for charged particle swarms. J Chem Phys 110:2423–2430

    Article  CAS  Google Scholar 

  27. Sejkora G, Girstmair P, Bryant HC, Märk TD (1984) Transverse diffusion of Ar+ and Ar2+ in Ar. Phys Rev A 29:3379–3387

    Article  CAS  Google Scholar 

  28. Løvass TH, Skullerud HR, Kristensen D-H, Linhjell D (1987) Drift and longitudinal diffusion of lithium ions in helium. J Phys D 20:1465–1471

    Article  Google Scholar 

  29. Viehland LA, Mason EA (1995) Transport properties of gaseous ions over a wide energy range IV. At Data Nucl Data Tables 60:37–95

    Article  CAS  Google Scholar 

  30. de Urquijo J, Alvarez I, Cisneros C, Martinez H (1996) The influence of ion/molecule reactions on the evaluation of ion mobility and diffusion coefficients. Int J Mass Spectrom Ion Process 154:25

    Article  Google Scholar 

  31. Sejkora G, Bryant HC, Girstmair P, Hesche M, Djurić N, Märk T D (1983) Transverse diffusion of mass-identified ions in their parent gases 3rd international swarm seminar proceedings. Innsbruck, Austria, pp 201–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry A. Viehland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 86.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viehland, L., Lutfullaeva, A., Dashdorj, J. et al. Accurate gaseous ion mobility measurements. Int. J. Ion Mobil. Spec. 20, 95–104 (2017). https://doi.org/10.1007/s12127-017-0220-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-017-0220-0

Keywords

Navigation