Skip to main content

Advertisement

Log in

Simultaneous Expression of PD-1 and PD-L1 in Peripheral and Central Immune Cells and Tumor Cells in the Benign and Malignant Salivary Gland Tumors Microenvironment

  • Original Paper
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

Background

To investigate the differential expression of PD-1 and PD-L1 in salivary gland tumors (SGTs, malignant and benign subtypes) and determine their association with the clinicopathological characterization of the patients.

Methods

The immunohistochemistry was used to examine PD-1 and PD-L1 expression in specimens from 83 patients with primary SGTs including salivary ductal carcinoma (SDC), adenoid cystic carcinoma (AdCC), acinic cell carcinoma (ACC), mucoepidermoid carcinoma (MEC), warthin’s tumors (WT), poleomorphic adenoma (PA) and other subtypes.

Results

The expression of PD-1 in peripheral and central immune cells (ICs) of MEC, and peripheral ICs of ACC was significantly higher than those with AdCC (P = 0.02, P = 0.02, P = 0.03, respectively). Interestingly, the expression of PD-1 was also observed in peripheral and central malignant tumor cells (TCs), particularly in SDC and ACC. Despite no significant difference in PD-L1 expression of TCs among malignant subtypes, the peripheral and central ICs of ACC and MEC were revealed to express PDL-1 significantly more than those with AdCC (P < 0.05). WTs were rich in PD-1/PD-L1 expressing ICs. However, the tumor microenvironment of PA generally had low levels of PD-1/PD-L1 expression. In general, the expression of PD-1 in peripheral and central TCs was found to be significantly higher in malignant tumors than in benign ones (P = 0.002 and P = 0.003, respectively).

Conclusion

The simultaneous presentation of PD-1 and PD-L1 in TCs and ICs of SGTs, their significant association with disease severity as well as the positive correlation between these immune checkpoints may suggest the therapeutic potential of anti-PD-1 and anti-PDL-1 combinational immunotherapy for SGTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that data supporting the findings of this study are available within the article.

Code Availability

Antibody anti-PD-1 monoclonal antibody (CAT. NO. IHC001-100; GenomeMe Richmond, Canada); anti-PDL-1 monoclonal antibody (CAT. NO. IHC441-7; GenomeMe Richmond, Canada). Software IBM SPSS statistical software (version 21, SPSS Inc, USA), IBM SPSS Statistics (RRID: SCR_016479); Graph Pad Prism 6 software package (Inc; San Diego CA, USA, 2003), (RRID: SCR_002798).

References

  1. Żurek M, Rzepakowska A, Jasak K, Niemczyk K. The epidemiology of salivary glands pathologies in adult population over 10 years in poland-cohort study. Int J Environ Res Public Health. 2021. https://doi.org/10.3390/ijerph19010179.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carlson ER, Schlieve T. Salivary gland malignancies. Oral Maxillofac Surg Clin North Am. 2019;31:125–44. https://doi.org/10.1016/j.coms.2018.08.007.

    Article  PubMed  Google Scholar 

  3. Bradley PJ. Classification of salivary gland neoplasms. Adv Otorhinolaryngol. 2016;78:1–8. https://doi.org/10.1159/000442119.

    Article  PubMed  Google Scholar 

  4. Sowa P, Goroszkiewicz K, Szydelko J, Chechlinska J, Pluta K, Domka W, et al. A review of selected factors of salivary gland tumour formation and malignant transformation. Biomed Res Int. 2018;2018:2897827. https://doi.org/10.1155/2018/2897827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mantravadi AV, Moore MG, Rassekh CH. AHNS series: do you know your guidelines? Diagnosis and management of salivary gland tumors. Head Neck. 2019;41:269–80. https://doi.org/10.1002/hed.25499.

    Article  PubMed  Google Scholar 

  6. Yu G, Peng X. Conservative and functional surgery in the treatment of salivary gland tumours. Int J Oral Sci. 2019;11:22. https://doi.org/10.1038/s41368-019-0059-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amini A, Waxweiler TV, Brower JV, Jones BL, McDermott JD, Raben D, et al. Association of adjuvant chemoradiotherapy vs radiotherapy alone with survival in patients with resected major salivary gland carcinoma: data from the national cancer data base. JAMA Otolaryngol Head Neck Surg. 2016;142:1100–10. https://doi.org/10.1001/jamaoto.2016.2168.

    Article  PubMed  Google Scholar 

  8. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–68. https://doi.org/10.1038/s41577-020-0306-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12030738.

    Article  PubMed  Google Scholar 

  10. Ross JS, Gay LM, Wang K, Vergilio JA, Suh J, Ramkissoon S, et al. Comprehensive genomic profiles of metastatic and relapsed salivary gland carcinomas are associated with tumor type and reveal new routes to targeted therapies. Ann Oncol. 2017;28:2539–46. https://doi.org/10.1093/annonc/mdx399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kato S, Elkin SK, Schwaederle M, Tomson BN, Helsten T, Carter JL, et al. Genomic landscape of salivary gland tumors. Oncotarget. 2015;6:25631–45. https://doi.org/10.18632/oncotarget.4554.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vital D, Ikenberg K, Moch H, Rössle M, Huber GF. The expression of PD-L1 in salivary gland carcinomas. Sci Rep. 2019;9:12724. https://doi.org/10.1038/s41598-019-49215-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sato F, Ono T, Kawahara A, Matsuo K, Kondo R, Sato K, et al. Prognostic value of tumor proportion score in salivary gland carcinoma. Laryngoscope. 2021;131:E1481–8. https://doi.org/10.1002/lary.29120.

    Article  CAS  PubMed  Google Scholar 

  14. Kuchar M, Strizova Z, Capkova L, Komarc M, Skrivan J, Bartunkova J, et al. The periphery of salivary gland carcinoma tumors reveals a PD-L1/PD-1 biomarker niche for the evaluation of disease severity and tumor-immune system interplay. Biomedicines. 2021. https://doi.org/10.3390/biomedicines9020097.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Porcheri C, Meisel CT, Mitsiadis TA. Molecular and cellular modelling of salivary gland tumors open new landscapes in diagnosis and treatment. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12113107.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Witte HM, Gebauer N, Lappöhn D, Umathum VG, Riecke A, Arndt A, et al. Prognostic impact of PD-L1 expression in malignant salivary gland tumors as assessed by established scoring criteria: tumor proportion score (TPS), combined positivity score (CPS), and immune cell (IC) infiltrate. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12040873.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fang Q, Wu Y, Du W, Zhang X, Chen D. Incidence and prognostic significance of PD-L1 expression in high-grade salivary gland carcinoma. Front Oncol. 2021;11:701181. https://doi.org/10.3389/fonc.2021.701181.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kuzenko YV, Romanuk AM, Dyachenko OO, Hudymenko O. Pathogenesis of warthin’s tumors. Interv Med Appl Sci. 2016;8:41–8. https://doi.org/10.1556/1646.8.2016.2.2.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Haghshenas MR, Khademi B, Faghih Z, Ghaderi A, Erfani N. Immune regulatory cells and IL17-producing lymphocytes in patients with benign and malignant salivary gland tumors. Immunol Lett. 2015;164:109–16. https://doi.org/10.1016/j.imlet.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  20. Haghshenas MR, Khademi B, Ashraf MJ, Ghaderi A, Erfani N. Helper and cytotoxic T-cell subsets (Th1, Th2, Tc1, and Tc2) in benign and malignant salivary gland tumors. Oral Dis. 2016;22:566–72. https://doi.org/10.1111/odi.12496.

    Article  CAS  PubMed  Google Scholar 

  21. Haghshenas MR, Ghaderi H, Daneste H, Ghaderi A. Immunological and biological dissection of normal and tumoral salivary glands. Int Rev Immunol. 2021. https://doi.org/10.1080/08830185.2021.1958806.

    Article  PubMed  Google Scholar 

  22. Wang X, Yang X, Zhang C, Wang Y, Cheng T, Duan L, et al. Tumor cell-intrinsic PD-1 receptor is a tumor suppressor and mediates resistance to PD-1 blockade therapy. Proc Natl Acad Sci USA. 2020;117:6640–50. https://doi.org/10.1073/pnas.1921445117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li H, Li X, Liu S, Guo L, Zhang B, Zhang J, et al. Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology. 2017;66:1920–33. https://doi.org/10.1002/hep.29360.

    Article  CAS  PubMed  Google Scholar 

  24. Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell. 2015;162:1242–56. https://doi.org/10.1016/j.cell.2015.08.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakai M, Fukumoto M, Ikai K, Ono Minagi H, Inagaki S, Kogo M, et al. Role of the mTOR signalling pathway in salivary gland development. Febs j. 2019;286:3701–17. https://doi.org/10.1111/febs.14937.

    Article  CAS  PubMed  Google Scholar 

  26. Diegel CR, Cho KR, El-Naggar AK, Williams BO, Lindvall C. Mammalian target of rapamycin-dependent acinar cell neoplasia after inactivation of Apc and Pten in the mouse salivary gland: implications for human acinic cell carcinoma. Cancer Res. 2010;70:9143–52. https://doi.org/10.1158/0008-5472.Can-10-1758.

    Article  CAS  PubMed  Google Scholar 

  27. Sato T, Maeta T, Abe R, Yamada H, Ishida K, Yashima-Abo A, et al. Successful treatment with nivolumab in a patient with metastatic salivary duct carcinoma. Case Rep Oncol. 2021;14:343–6. https://doi.org/10.1159/000512060.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chang H, Kim JS, Choi YJ, Cho JG, Woo JS, Kim A, et al. Overexpression of PD-L2 is associated with shorter relapse-free survival in patients with malignant salivary gland tumors. Onco Targets Ther. 2017;10:2983–92. https://doi.org/10.2147/ott.S134589.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mosconi C, de Arruda JAA, de Farias ACR, Oliveira GAQ, de Paula HM, Fonseca FP, et al. Immune microenvironment and evasion mechanisms in adenoid cystic carcinomas of salivary glands. Oral Oncol. 2019;88:95–101. https://doi.org/10.1016/j.oraloncology.2018.11.028.

    Article  PubMed  Google Scholar 

  30. Jiang Y, Zhan H. Communication between EMT and PD-L1 signaling: new insights into tumor immune evasion. Cancer Lett. 2020;468:72–81. https://doi.org/10.1016/j.canlet.2019.10.013.

    Article  CAS  PubMed  Google Scholar 

  31. Tang YL, Fan YL, Jiang J, Li KD, Zheng M, Chen W, et al. C-kit induces epithelial-mesenchymal transition and contributes to salivary adenoid cystic cancer progression. Oncotarget. 2014;5:1491–501. https://doi.org/10.18632/oncotarget.1606.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Enescu AS, Mărgăritescu CL, Crăiţoiu MM, Enescu A, Crăiţoiu Ş. The involvement of growth differentiation factor 5 (GDF5) and aggrecan in the epithelial-mesenchymal transition of salivary gland pleomorphic adenoma. Rom J Morphol Embryol. 2013;54:969–76.

    PubMed  Google Scholar 

  33. Hellquist H, Paiva-Correia A, Vander Poorten V, Quer M, Hernandez-Prera JC, Andreasen S, et al. Analysis of the clinical relevance of histological classification of benign epithelial salivary gland tumours. Adv Ther. 2019;36:1950–74. https://doi.org/10.1007/s12325-019-01007-3.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chin KW, Billings KR, Ishiyama A, Wang MB, Wackym PA. Characterization of lymphocyte subpopulations in warthin’s tumor. Laryngoscope. 1995;105:928–33. https://doi.org/10.1288/00005537-199509000-00011.

    Article  CAS  PubMed  Google Scholar 

  35. O’Neill ID. New insights into the nature of warthin’s tumour. J Oral Pathol Med. 2009;38:145–9. https://doi.org/10.1111/j.1600-0714.2008.00676.x.

    Article  PubMed  Google Scholar 

  36. Triantafyllou A, Thompson LD, Devaney KO, Bell D, Hunt JL, Rinaldo A, et al. Functional histology of salivary gland pleomorphic adenoma: an appraisal. Head Neck Pathol. 2015;9:387–404. https://doi.org/10.1007/s12105-014-0581-1.

    Article  PubMed  Google Scholar 

  37. Brodetskyi IS, Dyadyk OO, Myroshnychenko MS, Zaritska VI. Morphological characteristics of pleomorphic adenomas of salivary glands (analysis of the surgical material). Wiad Lek. 2020;73:2339–44.

    Article  PubMed  Google Scholar 

  38. Hiss S, Eckstein M, Segschneider P, Mantsopoulos K, Iro H, Hartmann A, et al. Tumour-infiltrating lymphocytes (TILs) and PD-L1 expression correlate with lymph node metastasis, high-grade transformation and shorter metastasis-free survival in patients with acinic cell carcinoma (AciCC) of the salivary glands. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13050965.

    Article  PubMed  Google Scholar 

  39. Harada K, Ferdous T, Ueyama Y. PD-L1 expression in malignant salivary gland tumors. BMC Cancer. 2018;18:156. https://doi.org/10.1186/s12885-018-4069-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strizova Z, Taborska P, Stakheev D, Partlová S, Havlova K, Vesely S, et al. NK and T cells with a cytotoxic/migratory phenotype accumulate in peritumoral tissue of patients with clear cell renal carcinoma. Urol Oncol. 2019;37:503–9. https://doi.org/10.1016/j.urolonc.2019.03.014.

    Article  CAS  PubMed  Google Scholar 

  41. Strizova Z, Snajdauf M, Stakheev D, Taborska P, Vachtenheim J Jr, Biskup J, et al. The paratumoral immune cell signature reveals the potential for the implementation of immunotherapy in esophageal carcinoma patients. J Cancer Res Clin Oncol. 2020;146:1979–92. https://doi.org/10.1007/s00432-020-03258-y.

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez CP, Wu QV, Voutsinas J, Fromm JR, Jiang X, Pillarisetty VG, et al. A phase II trial of pembrolizumab and vorinostat in recurrent metastatic head and neck squamous cell carcinomas and salivary gland cancer. Clin Cancer Res. 2020;26:837–45. https://doi.org/10.1158/1078-0432.Ccr-19-2214.

    Article  CAS  PubMed  Google Scholar 

  43. Cohen RB, Delord JP, Doi T, Piha-Paul SA, Liu SV, Gilbert J, et al. Pembrolizumab for the treatment of advanced salivary gland carcinoma: findings of the phase 1b KEYNOTE-028 study. Am J Clin Oncol. 2018;41:1083–8. https://doi.org/10.1097/coc.0000000000000429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang J, Fang W, Qin T, Yang Y, Hong S, Liang W, et al. Co-expression of PD-1 and PD-L1 predicts poor outcome in nasopharyngeal carcinoma. Med Oncol. 2015;32:86. https://doi.org/10.1007/s12032-015-0501-6.

    Article  CAS  PubMed  Google Scholar 

  45. Yin H, Tang Y, Guo Y, Wen S. Immune microenvironment of thyroid cancer. J Cancer. 2020;11:4884–96. https://doi.org/10.7150/jca.44506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mahmood U, Bang A, Chen YH, Mak RH, Lorch JH, Hanna GJ, et al. A randomized phase 2 study of pembrolizumab with or without radiation in patients with recurrent or metastatic adenoid cystic carcinoma. Int J Radiat Oncol Biol Phys. 2021;109:134–44. https://doi.org/10.1016/j.ijrobp.2020.08.018.

    Article  PubMed  Google Scholar 

  47. Giraldo NA, Becht E, Pagès F, Skliris G, Verkarre V, Vano Y, et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin Cancer Res. 2015;21:3031–40. https://doi.org/10.1158/1078-0432.Ccr-14-2926.

    Article  CAS  PubMed  Google Scholar 

  48. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14:717–34. https://doi.org/10.1038/nrclinonc.2017.101.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was conducted as the MD thesis of Sajjad Gerdabi, and was financially supported by grants from Shiraz University of Medical Sciences, Shiraz, Iran (Grant No: 22827), as well as Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran (ICR-100-500).

Funding

This study was supported by a Master’s thesis grant from Shiraz University of Medical Sciences (Grant number: 22827) as well as from Shiraz Institute for Cancer Research (Grant number: ICR-100–500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Reza Haghshenas or Nasrollah Erfani.

Ethics declarations

Conflicts of interest

There was no conflict of interest among the authors References.

Ethical approval

The study was approved by the Ethics Committee of Shiraz University of Medical Sciences (IR.SUMS.REC.1400.371).

Consent to participate

All patients provided informed written consent.

Consent for publication

The Authors informed consent to publication of the Work in any publications.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerdabi, S., Asadian, F., Kiani, R. et al. Simultaneous Expression of PD-1 and PD-L1 in Peripheral and Central Immune Cells and Tumor Cells in the Benign and Malignant Salivary Gland Tumors Microenvironment. Head and Neck Pathol 17, 178–192 (2023). https://doi.org/10.1007/s12105-022-01486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-022-01486-x

Keywords

Navigation