Skip to main content

Advertisement

Log in

Recent Developments in Metabolic Bone Diseases: a Gnathic Perspective

  • Update in Gnathic Pathology. Guest Editors: Angela Chi, DMD and John Wright, DDS
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

Metabolic bone diseases often are asymptomatic and progress sub clinically. Many patients present at a late stage with catastrophic skeletal and extra skeletal complications. In this article, we provide an overview of normal bone remodeling and a synopsis of recent developments in the following conditions: osteoporosis, rickets/osteomalacia, endocrine-induced bone disease, chronic kidney disease-mineral bone disorder and Paget’s disease of bone. Our discussion will emphasize the clinical and microscopic manifestations of these diseases in the jaws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sims NA, Martin J. Coupling the activities of bone formation and resorption: a multitude of signals with the basic multicellular unit. Bonekey Rep. 2014;3:481. doi:10.1038/bonekey.2013.215.

    PubMed  Google Scholar 

  2. Abu-Amer Y. NF-κB signaling and bone resorption. Osteoporos Int. 2013;24(9). doi:10.1007/s00198-013-2313-x.

  3. Weitzman MN. The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica. 2013;. doi:10.1155/2013/125705.

    Google Scholar 

  4. Boyce BF, Rosenberg E, de Papp AE, Duong T. The osteoclast, bone remodeling and treatment of metabolic bone disease. Eur J Clin Invest. 2012;42:1332–41.

    Article  CAS  PubMed  Google Scholar 

  5. Lacey DL, Timms E, Tan HL, Kelley MJ, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.

    Article  CAS  PubMed  Google Scholar 

  6. Blair JM, Zengh Y, Dunstan CR. RANK ligand. Int J Biochem Cell Biol. 2007;39:1077–81.

    Article  CAS  PubMed  Google Scholar 

  7. Weir EC, Horowitz MC, Baron R, Centrella M, Kacinski BM, Insogna KL. Macrophage colony-stimulating factor release and receptor expression in bone cells. J Bone Miner Res. 1993;8:1507–18.

    Article  CAS  PubMed  Google Scholar 

  8. Neve A, Corrado A, Cantatore FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res. 2010;. doi:10.1007/s00441-010-1086-1.

    PubMed  Google Scholar 

  9. Ross FP, Chappel J, Alvarez JI, Sander D, Butler WD. Interactions between the bone matrix proteins osteopontin and bone sialoproteins and the osteoclast integrin αvβ3 potentiate bone resorption. J Biol Chem. 1993;268:9901–7.

    CAS  PubMed  Google Scholar 

  10. Canalis E. Wnt signaling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrin. 2013;9:575–83.

    Article  CAS  Google Scholar 

  11. Recker RR, Kimmel DB, Dempster D, Weinstein RS, Wronski TJ, Burr DB. Issues in modern bone histomorphometry. Bone. 2011;49:955–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lindsay R, Zhou H, Cosman F, Nieves J, Dempster D. Double and quadruple tetracycline labeling of bone: impact of label itself. J Bone Miner Res. 2013;28:222–3.

    Article  PubMed  Google Scholar 

  13. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013;28:2–17.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Steiniche T. Bone histomorphometry in the pathophysiological evaluation of primary and secondary osteoporosis and various treatment modalities. APMIS Suppl. 1995;51:1–44.

    CAS  PubMed  Google Scholar 

  15. Grodstein F, Corditz G, Stampfer M. Post menopausal hormone use and tooth loss: a prospective study. J Am Dent Assoc. 1999;127:370–7.

    Article  Google Scholar 

  16. Weaver CM, Haeney RP, Teegarden D. Wheat bran abolishes the inverse relationship between calcium load size and absorption fraction in women. J Nutr. 1996;126:303–7.

    CAS  PubMed  Google Scholar 

  17. Devlin H, Karayianni K, Mitsea A, Jacobs R, et al. Diagnosing osteoporosis by using dental panoramic radiographs: the OSTEODENT project. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104(6):821–8.

    Article  PubMed  Google Scholar 

  18. Yamada S, Uchida K, Iwamoto Y, Sugino N, Yoshinari N, Kgami H, Taguchi A. Panoramic radiographic measurements, osteoporosis diagnosis and fractures in Japanese men and women. Oral Dis. 2014;. doi:10.1111/odi.12282.

    PubMed  Google Scholar 

  19. Nicopoulou-Karayianni K, Tzoutzoukos P, Mitsea A, Karayiannis A, et al. Tooth loss and osteoporosis: the OSTEODENT study. J Clin Periodontol. 2009;36(3):190–7.

    Article  PubMed  Google Scholar 

  20. Gaetti-Jardim EC, Santiago-Junior JF, Golato MC, Pellizer EP, Margro-Filho O, Jardim EGJ. Dental implants in patients with osteoporosis: a clinical reality? J Cranfac Surg. 2011;22:1111–3.

    Article  Google Scholar 

  21. Chen H, Liu N, Xu X, Qu X, Lu E. Smoking, radiotherapy, diabetes and osteoporosis as a risk factor for dental implant failure: a meta-analysis. PLoS One. 2013;8:e71955.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Alghamdi HS, Jansen JA. Bone regeneration associated with non-therapeutic and therapeutic surface coatings for dental implants in osteoporosis. Tissue Eng Part B Rev. 2013;19:233–53.

    Article  CAS  PubMed  Google Scholar 

  23. Sideropoulou-Chatzigiannis S, Kourtidou M, Tsalikis L. The effect of osteoporosis on periodontal status, alveolar bone and orthodontic tooth movement. A literature review. J Int Acad Periodontol. 2007;9(3):77–84.

    Google Scholar 

  24. Wang C, Yhang BH, Zhang H, He JW, et al. The A242T mutation in the low density lipoprotein receptor-related protein 5 gene in one Chinese family with osteosclerosis. Intern Med. 2013;52:187–92.

    Article  CAS  PubMed  Google Scholar 

  25. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:179–92.

    Article  CAS  PubMed  Google Scholar 

  26. Crockett JC, Mellis DJ, Scott DI, Helfrich MH. New knowledge on critical osteoclast formation and activation pathways from study on rare genetic diseases of osteoclasts: focus on the RANK/RANKL axis. Osteoporos Int. 2011;22:1–20.

    Article  CAS  PubMed  Google Scholar 

  27. Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial osteolysis. Nat Genet. 2000;24:45–8.

    Article  CAS  PubMed  Google Scholar 

  28. Mekherjee A, Bhattacharyya AK, Sarkar PK, Mondal AK. Kwashiorkor–Marasmus syndrome and nutritional rickets—a bone biopsy study. Trans R Soc Trop Med Hyg. 1991;85:688–9.

    Article  Google Scholar 

  29. Zuberi LM, Habib A, Haque N, Jabbar A. Vitamin D deficiency in ambulatory patients. J Pak Med Assoc. 2008;58:482–4.

    PubMed  Google Scholar 

  30. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92:131–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yadev VK, Balaji S, Suresh PS, Liu XS, et al. Pharmacological inhibition of gut- derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med. 2010;16:308–12.

    Article  Google Scholar 

  32. Kinderblom J, Ohlsson C, Ljunggren O, Karlsson MK, et al. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res. 2009;24:785–91.

    Article  Google Scholar 

  33. Zhao LJ, Jiang H, Papasian CJ, Maulik D, et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res. 2008;23(1):17–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Leidig-Bruckner G, Grobholz S, Bruckner T, Scheidt-Nave C, Nawroth P, Schneider JG. Prevalence and determinants of odteoporosis in patients with type 1 and type 2 diabetes mellitus. BMC Endocr Disord. 2014;14:33. doi:10.1186/1472-6823-14-33.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lodish MB, Gourgari E, Sinaii N, Hill S, et al. Skeletal maturation in children with Cushing syndrome is not consistently delayed: the role of corticotropin, obesity, and steroid hormones, and the effect of surgical cure. J Pediatr. 2014;164(4):801–6.

    Article  PubMed  Google Scholar 

  36. Moe S, Drüecke T, Cunningham J, et al. Definition, evaluation and clinical classification of renal osteodystropy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69:1945–53.

    Article  CAS  PubMed  Google Scholar 

  37. Rodriguez M, Lopez I, Munoz J, Aguilera-Tejero E, Almaden Y. FGF23 and mineral metabolism, implications in CKD-MBD. Nefrologia. 2012;32:275–8.

    PubMed  Google Scholar 

  38. Shaloub V, Schatzen EM, Ward SC, Davis J, Stevens J, et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest. 2012;122:2543–53.

    Article  Google Scholar 

  39. Cozzolino M. Prevention and treatment of CKD-MBD. Nephrourol Mon. 2013;5:773–4.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Friedlander AH, Aghazadehsanai N, Chang TI, Harada N, Garrett NR. Prevalence of calcified carotid artery atheromas on panoramic images of individuals with primary hyperparathyroidism. Dentomaxillofac Radiol. 2013;42:21030118.

    Google Scholar 

  41. Raggi P, Boulay A, Chasen-Taber S, et al. Cardiac calcification in adult hemodialysis patients. A link between end stage renal disease and cardiovascular disease? J Am Coll Cardiol. 2002;39:695–701.

    Article  PubMed  Google Scholar 

  42. Rea SL, Walsh JP, Layfield R, Ratajczak T, Xu J. New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget’s disease of bone. Endocr Rev. 2013;34:501–24.

    Article  CAS  PubMed  Google Scholar 

  43. Bolland MJ, Cindy T. Paget’s disease of bone: clinical review and update. J Clin Pathol. 2013;66:924–7.

    Article  PubMed  Google Scholar 

  44. Sun Q, Sammut B, Wang FM, Kurihara N, Windle JJ, Roodman GD, Galson DL. TBK1 mediates critical effects of measles virus nucleocapsid protein (MVNP) on pagetic osteoclast formation. J Bone Miner Res. 2014;29:90–102.

    Article  CAS  PubMed  Google Scholar 

  45. Galson DL, Roodman GD. Pathobiology of Paget’s disease of bone. J Bone Metab. 2014;21:85–98.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Klinck R, Laberge G, Bisson M, McManus S, Michou L, Brown JP, Roux S. Alternative splicing in osteoclasts in Paget’s disease of bone. BMC Med Genet. 2014;15:98. doi:10.1186/s12881-014-0098-1.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Grasemann C, Schündeln MM, Hövel M, Schweiger B, Bergmann C, Hermann R, Wieczorek D, Zabel B, Wieland R, Hauffa BP. Effects of RANK-ligand antibody (denosumab) treatment on bone turnover markers in a girl with juvenile Paget’s disease. J Clin Endocrinol Metab. 2013;98:3121–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich J. Raubenheimer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raubenheimer, E.J., Noffke, C.E. & Hendrik, H.D. Recent Developments in Metabolic Bone Diseases: a Gnathic Perspective. Head and Neck Pathol 8, 475–481 (2014). https://doi.org/10.1007/s12105-014-0580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-014-0580-2

Keywords

Navigation