Skip to main content

Advertisement

Log in

Pediatric Blood Cultures and Antibiotic Resistance: An Overview

  • Review Article
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

A Correction to this article was published on 12 March 2020

This article has been updated

Abstract

Bloodstream infections (BSI) due to multidrug-resistant organisms, especially from pediatric intensive care units (PICU), are being increasingly reported across the world. Since BSI is associated with high mortality, it is essential to treat these infections early with appropriate antibiotics. Surveillance of etiology and emerging antimicrobial resistance (AMR) is considered an important step in the formulation of antibiotic policy for early treatment and judicious use of antibiotics. In this review on etiology and its antibiogram in community acquired BSI, S. typhi followed by S. paratyphi A were the major bacterial isolates. Quinolone resistance of more than 90% in Salmonella is now reported from all over India. Ceftriaxone remains the drug of choice for enteric fever due to its 100% susceptibility. In PICU there is an emergence of candidemia due to non-albicans candida which are now predominant isolates at few centers. BSI due to gram-negative bacteria, mostly by Klebseilla pneumoniae and gram-positive cocci (S. aureus) are the other major pathogens commonly observed in BSI from PICU. There is a high prevalence of antimicrobial resistance to commonly used antibiotics like ampicillin (94.9%–90.7%), cefotaxime (92.4%–71.4%), piperacillin-tazobactum (31.2%–27.5%) and levofloxacin (42.4%–39.8%). Resistance to carbapenems, primarily due to blaNDM is seen in all the centers and the rate varies between 1%- 79% with K. pneumoniae and A. baumannii showing the maximum resistance. This review highlights the magnitude of the AMR in the pediatric population and calls for the urgent implementation of antimicrobial stewardship programs to save the remaining antimicrobials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 12 March 2020

    The article Pediatric Blood Cultures and Antibiotic Resistance: An Overview, written by Chand Wattal and Neeraj Goel, was originally published electronically on the publisher���s internet portal (currently SpringerLink) on 21 December 2019 with open access.

References

  1. Falagas ME, Tansarli GS, Karageorgopoulos DE, Vardakas KZ. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis. 2014;20:1170–5.

    Article  Google Scholar 

  2. Gray JW. A 7-year study of bloodstream infections in an English children's hospital. Eur J Pediatr. 2004;163:530–5.

    Article  Google Scholar 

  3. Stoll BJ, Hansen N, Fanaroff AA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110:285–91.

    Article  Google Scholar 

  4. Posfay-Barbe KM, Zerr DM, Pittet D. Infection control in paediatrics. Lancet Infect Dis. 2008;8:19–31.

    Article  Google Scholar 

  5. Wattal C, Oberoi J. Infections in pediatric intensive care units (PICU). Indian J Pediatr. 2012;79:647–9.

    Article  Google Scholar 

  6. Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62:e51–77.

    Article  Google Scholar 

  7. India clen. The INCLEN India Infectious Disease Initiative (IIDI) USAID/ INCLEN Final Report, 2014. Available at: http://www.inclentrust.org/inclen/ uploadedbyfck/file/publication/the%20inclen/USAID%20IIDI-final%20version.pdf. Accessed 26 August 2015.

  8. Indian Network for Surveillance of Antimicrobial Resistance (INSAR) group, India. Methicillin-resistant Staphylococcus aureus (MRSA) in India: prevalence & susceptibility pattern. Indian J Med Res. 2013;137:363–9.

  9. Walia K, Ohri VC, Mathai D. Antimicrobial Stewardship Programme of ICMR. Antimicrobial stewardship programme (AMSP) practices in India. Indian J Med Res. 2015;142:130–8.

    Article  Google Scholar 

  10. Bielicki JA, Lundin R, Sharland M. Antibiotic resistance prevalence in routine bloodstream isolates from children’s hospitals varies substantially from adult surveillance data in Europe. Pediatr Infect Dis J. 2015;34:734–41.

    Article  Google Scholar 

  11. Dharmapalan D, Shet A, Yewale V, Sharland M. High reported rates of antimicrobial resistance in Indian neonatal and pediatric blood stream infections. J Pediatric Infect Dis Soc. 2017;6:e62–8.

    Article  Google Scholar 

  12. Perl B, Gottehrer NP, Raveh D, Schlesinger Y, Rudensky B, Yinnon AM. Cost-effectiveness of blood cultures for adult patients with cellulitis. Clin Infect Dis. 1999;29:1483–8.

    Article  CAS  Google Scholar 

  13. Son JS, Song JH, Ko KS, et al. Bloodstream infections and clinical significance of healthcare-associated bacteremia: a multicenter surveillance study in Korean hospitals. J Korean Med Sci. 2010;25:992–8.

    Article  Google Scholar 

  14. Weinstein MP, Reller LB, Murphy JR, Lichtenstein KA. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. I. Laboratory and epidemiologic observations. Rev Infect Dis. 1983;5:35–53.

    Article  CAS  Google Scholar 

  15. Lee A, Mirrett S, Reller LB, Weinstein MP. Detection of bloodstream infections in adults: how many blood cultures are needed? J Clin Microbiol. 2007;45:3546–8.

    Article  Google Scholar 

  16. Cockerill FR 3rd, Wilson JW, Vetter EA, et al. Optimal testing parameters for blood cultures. Clin Infect Dis. 2004;38:1724–30.

    Article  Google Scholar 

  17. Centers for Disease Control and Prevention Bloodstream Infection Event (Central Line-Associated Bloodstream Infection and Non-central Line Associated Bloodstream Infection). Available at: https://www.cdc.gov/nhsn/pdfs/pscmanual/4psc_clabscurrent.pdf. Accessed 15 August 2019

  18. Reimer LG, Wilson ML, Weinstein MP. Update on detection of bacteremia and fungemia. Clin Microbiol Rev. 1997;10:444–65.

    Article  CAS  Google Scholar 

  19. Ochiai RL, Acosta CJ, Danovaro-Holliday MC, et al; Domi Typhoid Study Group. A study of typhoid fever in five Asian countries: disease burden and implications for controls. Bull World Health Organ. 2008;86:260–8.

    Article  Google Scholar 

  20. Iyer RN, Jangam RR, Jacinth A, Venkatalakshmi A, Nahdi FB. Prevalence and trends in the antimicrobial susceptibility pattern of Salmonella enterica serovars typhi and paratyphi A among children in a pediatric tertiary care hospital in South India over a period of ten years: a retrospective study. Eur J Clin Microbiol Infect Dis. 2017;36:2399–404.

    Article  CAS  Google Scholar 

  21. John J, Van Aart CJ, Grassly NC. The burden of typhoid and paratyphoid in India: systematic review and meta-analysis. PLoS Negl Trop Dis. 2016;10:e0004616.

    Article  Google Scholar 

  22. Sir Ganga Ram Hospital, July 2019. Microbiology newsletter. Available at: https://www.sgrh.com/publications. Accessed 15 August 2019.

  23. Ahmed D, Hoque A, Mazumder R, et al. Salmonella enterica serovar Typhi strain producing extended-spectrum β-lactamases in Dhaka, Bangladesh. J Med Microbiol. 2012;61:1032–3.

    Article  CAS  Google Scholar 

  24. Pokharel BM, Koirala J, Dahal RK, Mishra SK, Khadga PK, Tuladhar NR. Multidrug-resistant and extended-spectrum beta-lactamase (ESBL)-producing Salmonella enterica (serotypes Typhi and Paratyphi A) from blood isolates in Nepal: surveillance of resistance and a search for newer alternatives. Int J Infect Dis. 2006;10:434–8.

    Article  CAS  Google Scholar 

  25. Rotimi VO, Jamal W, Pal T, Sovenned A, Albert MJ. Emergence of CTX-M-15 type extended-spectrum beta-lactamase-producing Salmonella spp. in Kuwait and the United Arab Emirates. J Med Microbiol. 2008;57:881–6.

    Article  CAS  Google Scholar 

  26. Pfeifer Y, Matten J, Rabsch W. Salmonella enterica serovar Typhi with CTX-M beta-lactamase, Germany. Emerg Infect Dis. 2009;15:1533–5.

    Article  CAS  Google Scholar 

  27. World Health Organization. Guidelines for the Management of Typhoid Fever. Availaible at: http://apps.who.int/medicinedocs/documents/s20994en/s20994en.pdf. Accessed 8 August 2019.

  28. Lakshmi KS, Jayashree M, Singhi S, Ray P. Study of nosocomial primary bloodstream infections in a pediatric intensive care unit. J Trop Pediatr. 2007;53:87–92.

    Article  CAS  Google Scholar 

  29. Wattal C, Raveendran R, Goel N, Oberoi JK, Rao BK. Ecology of blood stream infection and antibiotic resistance in intensive care unit at a tertiary care hospital in North India. Braz J Infect Dis. 2014;18:245–51.

    Article  Google Scholar 

  30. Agrawal C, Biswas D, Gupta A, Chauhan BS. Antibiotic overuse as a risk factor for candidemia in an Indian pediatric ICU. Indian J Pediatr. 2015;82:530–6.

    Article  Google Scholar 

  31. Oberoi JK, Wattal C, Goel N, Raveendran R, Datta S, Prasad K. Non-albicans candida species in blood stream infections in a tertiary care hospital at New Delhi, India. Indian J Med Res. 2012;136:997–1003.

    PubMed  PubMed Central  Google Scholar 

  32. Singhi S, Ray P, Mathew JL, Jayashree M, Dhanalakshmi. Nosocomial bloodstream infection in a pediatric intensive care unit. Indian J Pediatr. 2008;75:25–30.

    Article  Google Scholar 

  33. Thacker N, Pereira N, Banavali SD, et al. Epidemiology of bloodstream infections in pediatric patients at a tertiary care cancer centre. Indian J Cancer. 2014;51:438–41.

    Article  CAS  Google Scholar 

  34. Lake JG, Weiner LM, Milstone AM, Saiman L, Magill SS, See I. Pathogen distribution and antimicrobial resistance among pediatrichealthcare-associated infections reported to the National Healthcare Safety Network, 2011–2014. Infect Control Hosp Epidemiol. 2018;39:1–11.

    Article  Google Scholar 

  35. Sekar R, Mythreyee M, Srivani S, Sivakumaran D, Lallitha S, Saranya S. Carbapenem-resistant enterobacteriaceae in pediatric bloodstream infections in rural southern India. Indian Pediatr. 2017;54:1021–4.

    Article  Google Scholar 

  36. Kuster SP, Ruef C, Bollinger AK, et al. Correlation between case mix index and antibiotic use in hospitals. J Antimicrob Chemother. 2008;62:837–42.

    Article  CAS  Google Scholar 

  37. Nabarro LEB, Shankar C, Pragasam AK, et al. Clinical and bacterial risk factors for mortality in children with carbapenem-resistant enterobacteriaceae bloodstream infections in India. Pediatr Infect Dis J. 2017;36:e161–6.

    Article  Google Scholar 

  38. Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.

    Article  Google Scholar 

  39. Sir Ganga Ram Hospital, November 2018. Microbiology Newsletter. Available at: https://www.sgrh.com/publications. Accessed 15 August 2019.

  40. Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts; Fourth Informational Supplement. CLSI document M27-S4. Wayne, PA: CLSI; 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chand Wattal.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wattal, C., Goel, N. Pediatric Blood Cultures and Antibiotic Resistance: An Overview. Indian J Pediatr 87, 125–131 (2020). https://doi.org/10.1007/s12098-019-03123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-019-03123-y

Keywords

Navigation