Skip to main content

Advertisement

Log in

The emerging role of Snail1 in the tumor stroma

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The transcription factor Snail1 leads to the epithelial–mesenchymal transition by repressing the adherent and tight junctions in epithelial cells. This process is related to an increase of cell migratory and mesenchymal properties during both embryonic development and tumor progression. Although Snail1 expression is very limited in adult animals, emerging evidence has placed Snail at the forefront of medical science. As a transcriptional repressor, Snail1 confers cancer stem cell-like traits on tumor cells and promotes drug resistance, tumor recurrence and metastasis. In this review, we summarize recent reports that suggest the pro-tumorigenic roles of Snail1 expression in tumor stroma. The crosstalk between tumor and stromal cells mediated by Snail1 regulates paracrine communication, pro-tumorigenic abilities of cancer cells, extracellular matrix characteristics and mesenchymal differentiation in cancer stem cells and cancer-associated fibroblasts. Therefore, understanding the regulation and functional roles of Snail1 in the tumor microenvironment will provide us with new therapies for treating metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–66.

    Article  CAS  PubMed  Google Scholar 

  2. Alberga A, Boulay JL, Kempe E, Dennefeld C, Haenlin M. The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ layers. Dev Camb Engl. 1991;111:983–92.

    CAS  Google Scholar 

  3. Hemavathy K, Hu X, Ashraf SI, Small SJ, Ip YT. The repressor function of snail is required for Drosophila gastrulation and is not replaceable by Escargot or Worniu. Dev Biol. 2004;269:411–20.

    Article  CAS  PubMed  Google Scholar 

  4. Murray SA, Oram KF, Gridley T. Multiple functions of Snail family genes during palate development in mice. Development. 2007;134:1789–97.

    Article  CAS  PubMed  Google Scholar 

  5. Batlle R, Alba-Castellón L, Loubat-Casanovas J, Armenteros E, Francí C, Stanisavljevic J, et al. Snail1 controls TGF-β responsiveness and differentiation of mesenchymal stem cells. Oncogene. 2013;32:3381–9.

    Article  CAS  PubMed  Google Scholar 

  6. Zeisberg M, Neilson EG. Biomarkers for epithelial–mesenchymal transitions. J Clin Invest. 2009;119:1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011;27:347–76.

    Article  CAS  PubMed  Google Scholar 

  8. Tse JC, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007;101:816–29.

    Article  CAS  PubMed  Google Scholar 

  9. Kalluri R, Weinberg RA. The basics of epithelial–mesenchymal transition. J Clin Invest. 2009;119:1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  11. Alves CC, Rosivatz E, Schott C, Hollweck R, Becker I, Sarbia M, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J. Pathol. 2007;211:507–15.

    Article  CAS  Google Scholar 

  12. Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002;21:3241–6.

    Article  CAS  PubMed  Google Scholar 

  13. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.

    Article  CAS  PubMed  Google Scholar 

  14. DiMeo TA, Anderson K, Phadke P, Feng C, Perou CM, Naber S, et al. A novel lung metastasis signature links Wnt Signaling with cancer cell self-renewal and epithelial–mesenchymal transition in basal-like breast cancer. Cancer Res. 2009;69:5364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elloul S, Bukholt Elstrand M, Nesland JM, Tropé CG, Kvalheim G, Goldberg I, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631–43.

    Article  CAS  PubMed  Google Scholar 

  16. Emadi Baygi M, Soheili ZS, Schmitz I, Sameie S, Schulz WA. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biol Toxicol. 2010;26:553–67.

    Article  CAS  PubMed  Google Scholar 

  17. Francí C, Gallén M, Alameda F, Baró T, Iglesias M, Virtanen I, et al. Snail1 Protein in the Stroma as a New Putative Prognosis Marker for Colon Tumours. In: Callaerts P, editor. PLoS One. 2009;4:e5595.

  18. Kuphal S, Palm HG, Poser I, Bosserhoff AK. Snail-regulated genes in malignant melanoma. Melanoma Res. 2005;15:305–13.

    Article  CAS  PubMed  Google Scholar 

  19. Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol. 2005;12:488–96.

    Article  PubMed  Google Scholar 

  20. Vandewalle C. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res. 2005;33:6566–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, et al. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.

    Article  CAS  PubMed  Google Scholar 

  22. Peña C, García JM, Larriba MJ, Barderas R, Gómez I, Herrera M, et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene. 2009;28:4375–85.

    Article  PubMed  Google Scholar 

  23. Peña C, García JM, Silva J, García V, Rodríguez R, Alonso I, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet. 2005;14:3361–70.

    Article  PubMed  Google Scholar 

  24. Worthley DL, Giraud AS, Wang TC. Stromal fibroblasts in digestive cancer. Cancer Microenviron. 2010;3:117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727–39.

    Article  CAS  PubMed  Google Scholar 

  26. Xouri G, Christian S. Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol. 2010;21:40–6.

    Article  CAS  PubMed  Google Scholar 

  27. Allen M, Louise Jones J. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J. Pathol. 2011;223:163–77.

    Article  Google Scholar 

  28. Augsten M, Hägglöf C, Peña C, Östman A. A digest on the role of the tumor microenvironment in gastrointestinal cancers. Cancer Microenviron. 2010;3:167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Herrera M, Islam ABMMK, Herrera A, Martin P, Garcia V, Silva J, et al. Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature. Clin Cancer Res. 2013;19:5914–26.

    Article  CAS  PubMed  Google Scholar 

  30. Mueller L, Goumas FA, Affeldt M, Sandtner S, Gehling UM, Brilloff S, et al. Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol. 2007;171:1608–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004;2:e7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res. 2011;1:482–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Beacham DA, Cukierman E. Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol. 2005;15:329–41.

    Article  PubMed  Google Scholar 

  34. Gout S, Huot J. Role of cancer microenvironment in metastasis: focus on colon cancer. Cancer Microenviron. 2008;1:69–83.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5:1597–601.

    Article  CAS  PubMed  Google Scholar 

  36. Qian B-Z, Pollard JW, Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  Google Scholar 

  37. Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5:1640–6.

    Article  CAS  PubMed  Google Scholar 

  38. Franci C, Takkunen M, Dave N, Alameda F, Gomez S, Rodriguez R, et al. Expression of Snail protein in tumor-stroma interface. Oncogene. 2006;25:5134–44.

    CAS  PubMed  Google Scholar 

  39. Stanisavljevic J, Loubat-Casanovas J, Herrera M, Luque T, Pena R, Lluch A, et al. Snail1-expressing fibroblasts in the tumor microenvironment display mechanical properties that support metastasis. Cancer Res. 2015;75:284–95.

    Article  CAS  PubMed  Google Scholar 

  40. Alba-Castellón L, Batlle R, Francí C, Fernández-Aceñero MJ, Mazzolini R, Peña R, et al. Snail1 expression is required for sarcomagenesis. Neoplasia. 2014;16:413–21.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen S-Y, Shiau A-L, Li Y-T, Lin C-C, Jou I-M, Liu M-F, et al. Transcription factor snail regulates tumor necrosis factor α-mediated synovial fibroblast activation in the rheumatoid joint: snail regulates TNFα-mediated synovial fibroblast activation. Arthritis Rheumatol. 2015;67:39–50.

    Article  CAS  PubMed  Google Scholar 

  42. Rowe RG, Li X-Y, Hu Y, Saunders TL, Virtanen I, de Herreros AG, et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J Cell Biol. 2009;184:399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rosivatz E, Becker K-F, Kremmer E, Schott C, Blechschmidt K, Höfler H, et al. Expression and nuclear localization of Snail, an E-cadherin repressor, in adenocarcinomas of the upper gastrointestinal tract. Virchows Arch. 2006;448:277–87.

    Article  CAS  PubMed  Google Scholar 

  44. Liu S, Liao G, Ding J, Ye K, Zhang Y, Zeng L, et al. Dysregulated expression of Snail and E-cadherin correlates with gastrointestinal stromal tumor metastasis. Eur J Cancer Prev. 2014;23:329–35.

    Article  PubMed  Google Scholar 

  45. Jouppila-Mättö A, Tuhkanen H, Soini Y, Pukkila M, Närkiö-Mäkelä M, Sironen R, et al. Transcription factor Snail1 expression and poor survival in pharyngeal squamous cell carcinoma. Histol Histopathol. 2011;26:443–9.

    PubMed  Google Scholar 

  46. Schulte J, Weidig M, Balzer P, Richter P, Franz M, Junker K, et al. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells. Histochem Cell Biol. 2012;138:847–60.

    Article  CAS  PubMed  Google Scholar 

  47. Herrera A, Herrera M, Alba-Castellón L, Silva J, García V, Loubat-Casanovas J, et al. Protumorigenic effects of Snail-expression fibroblasts on colon cancer cells. Int J Cancer. 2014;134:2984–90.

    Article  CAS  PubMed  Google Scholar 

  48. Hu W, Li C, Sun J, Feng B, Zhang D, Ma J, et al. Cancer-associated-fibroblast induces epithelial–mesenchymal transition of gastric cancer cells via activating Thy-1. J Carcinog Mutagen. 2014;5:1–10.

    Google Scholar 

  49. Peláez-García A, Barderas R, Batlle R, Viñas-Castells R, Bartolomé RA, Torres S, et al. A proteomic analysis reveals that snail regulates the expression of the nuclear orphan receptor nuclear receptor subfamily 2 Group F Member 6 (Nr2f6) and Interleukin 17 (IL-17) to inhibit adipocyte differentiation. Mol Cell Proteom. 2015;14:303–15.

    Article  Google Scholar 

  50. Torres S, Bartolome RA, Mendes M, Barderas R, Fernandez-Acenero MJ, Pelaez-Garcia A, et al. proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res. 2013;19:6006–19.

    Article  CAS  PubMed  Google Scholar 

  51. Dvorak HF. Tumors: wounds that do not heal. N Engl J Med. 1986;315:1650–9.

    Article  CAS  PubMed  Google Scholar 

  52. Lu C, Sun X, Sun L, Sun J, Lu Y, Yu X, et al. Snail mediates PDGF-BB-induced invasion of rat bone marrow mesenchymal stem cells in 3D collagen and chick chorioallantoic membrane. J Cell Physiol. 2013;228:1827–33.

    Article  CAS  PubMed  Google Scholar 

  53. Shields MA, Dangi-Garimella S, Krantz SB, Bentrem DJ, Munshi HG. Pancreatic cancer cells respond to Type I collagen by inducing snail expression to promote membrane type 1 matrix metalloproteinase-dependent collagen invasion. J Biol Chem. 2011;286:10495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shields MA, Krantz SB, Bentrem DJ, Dangi-Garimella S, Munshi HG. Interplay between 1-integrin and rho signaling regulates differential scattering and motility of pancreatic cancer cells by snail and slug proteins. J Biol Chem. 2012;287:6218–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D, Eliceiri KW, et al. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat Cell Biol. 2013;15:677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stanisavljevic J, Porta-de-la-Riva M, Batlle R, de Herreros AG, Baulida J. The p65 subunit of NF- B and PARP1 assist Snail1 in activating fibronectin transcription. J Cell Sci. 2011;124:4161–71.

    Article  CAS  PubMed  Google Scholar 

  57. Quante M, Tu SP, Tomita H, Gonda T, Wang SSW, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li X-Y, Zhou X, Rowe RG, Hu Y, Schlaepfer DD, Ilic D, et al. Snail1 controls epithelial–mesenchymal lineage commitment in focal adhesion kinase-null embryonic cells. J Cell Biol. 2011;195:729–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee Y, Kim SH, Lee YJ, Kang ES, Lee B-W, Cha BS, et al. Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor γ. Cell Mol Life Sci. 2013;70:3959–71.

    Article  CAS  PubMed  Google Scholar 

  60. de Frutos CA, Dacquin R, Vega S, Jurdic P, Machuca-Gayet I. Angela Nieto M. Snail1 controls bone mass by regulating Runx2 and VDR expression during osteoblast differentiation. EMBO J. 2009;28:686–96.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Martin P. Wound healing—aiming for perfect skin regeneration. Science. 1997;276:75–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. Eaude helped with the English text. This research is supported by PI12/02037, RD12/0036/0041 from the Instituto de Salud Carlos III-FEDER; by the Fundación Científica AECC; by SAF2010-20750 from the Ministerio de Economía y Competitividad of Spain-FEDER; by S2010/BMD-2344 from the Comunidad de Madrid; and by the Fundación Banco Santander. Cristina Peña is a recipient of a Miguel Servet Contract from the Instituto de Salud Carlos III. All authors state no conflicts of interest. We thank lab members for help and advice throughout this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Peña.

Ethics declarations

This manuscript does not contain clinical studies or patient data. Thus, statements about “Informed consent” or “Research involving Human Participants and/or Animals” are not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera, A., Herrera, M. & Peña, C. The emerging role of Snail1 in the tumor stroma. Clin Transl Oncol 18, 872–877 (2016). https://doi.org/10.1007/s12094-015-1474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-015-1474-9

Keywords

Navigation